打开主菜单

求真百科

冰晶

中文名:冰晶

本质:固态水合物

冰晶英语:ice crystal)是宏观晶体形式。冰晶在光学电学物理性质方面有各向异性,并且具有较高的介电常数[1]冰晶常呈六角柱状、六角板状、枝状、针状等形状,由于大气中的冰晶一般由水蒸气凝华产生,因此具有非常对称的外型。在不同的环境温度湿度中,可以产生不同的对称外形。当环境因素改变时,冰晶的形成方式也可能会改变,因此最终形成的晶体可能是多种样式混合而成的,例如冠柱晶。空中的冰晶下落时倾向以其侧棱平行地平线,因此能以增强的差动反射率偏振天气雷达信号(polarimetric weather radar)中被发现。[注 1]冰晶带后,下落的方向便不再平行于地平线。带电的冰晶也很较容易被偏振天气雷达检测出来。

目录

结构

宏观的冰是多晶的,[2]所以在研究冰的晶体结构时使用的往往是单晶的冰晶。1916年末,人们开始利用X射线衍射法对冰晶的结构进行一系列的探究。[3]研究中获得的照片有12条清晰的衍射线,分析其位置可以得知冰晶属于六方晶系晶体。如左侧的冰晶结构示意图一所示,冰晶晶胞四棱柱形,的底面边长为4.52Å为7.34Å。[4]冰晶分子排列的方式与金属晶体属同一晶系,但是通过X射线衍射法可以得知冰晶与金属镁在结构上还是有很大差别的。下表是大卫·马蒂亚斯·丹尼森(David Mathias Dennison,美国物理学家,后来计算出质子服从费米–狄拉克统计,拥有½自旋[5])于1921年对冰晶进行X射线衍射实验获得的结果:

冰晶X射线衍射图数据表[6]
相邻线之间的偏角
(度数)
线的强度
(估算值)
用作对比的镁线[7] 晶面间距 晶面取向 基面的数量
观测值 理论值
10.44 1 4.7 3.92 3.915 1010 3
11.16 10 - 3.67 3.671 0001 1
11.88 2 10.0 3.44 3.453 1011 6
15.30 1.5 3.3 2.68 2.675 1012 6
18.12 1 4.7 2.26 2.260 1120 3
19.86 5 4.0 2.065 2.065 1013 6
21.38 1 4.0 1.92 1.925 1122 6
27.16 1.5 1.0 1.516 1.528 2023 6
30.20 2 1.3 1.368 1.372 1015 6
1.368 1.372 1232 12
31.76 0.25 0.2 1.30 1.305 1010 3
33.08 0.25 1.0 1.25 1.268 1233 12
35.54 0.5 0.3 1.167 1.165 2025 6

应用

降雪

极小的冰晶和0℃以下的过冷却水滴组成云层,水气不断升腾与冰晶凝华,水温达-5℃时,无数根六角形的冰针就形成了。这是冰晶最稳定的形状。同时,凝华作用还在继续进行。如果冰晶周围水气多,6个角增长很快,就形成星状;假如冰晶四周水气很少,6角不如两个底面增长快,便形成柱状;倘若水气适中,则形成片状雪花。如果地面气温较高,雪降落过程中边融化边碰撞合并为水滴,最终成为降雨。

制冷设备

该产品外壳采用高强度耐低落温材料,内盛蓄冷液(白色稠液体)而成(冰点-12℃,即零下12度结冰,冰点比水的冰点低,故储存的冷量和溶解时释放出的冷量都远远大于水,直接起到增强降温制冷之用,具有储冷足、降温快、释冷慢等特点。),采用橡胶塞加铝盖密封不会泄漏,无毒,符合卫生标准,储冷量大,广泛适用于各种冰箱、冷柜、鱼箱作、医药储冷保冷;如今被广泛用于空调扇增强降温制冷之用(先将冰晶放进冰箱冷冻5到6小时结冰后,再放入空调扇水箱内降温,循环使用,永不失效)。成分是冷媒: (——以下是是把载冷剂和制冷剂统称冷媒) 冷冻空调系统中,用以传递热能,产生冷冻效果之工作流体。依工作方式分类可分为一次(Primary)冷媒与二次(Secondary)冷媒。依物质属性分类可分为自然(Natural)冷媒与合成(Synthetic)冷媒。 理想冷媒:无毒、不爆炸、对金属及非金属无腐蚀作用、不燃烧、泄漏时易于察觉、化学性安定、对润滑油无破坏性、具有较的蒸发潜热、对环境无害 。

形成

冰晶的形成发生在云层中、云层下和地表层,并由多个物理过程组成。在冰晶的形成过程中,冰核是必不可少的(其中大气中悬浮的尘埃颗粒占了70%),在冰核上过冷水滴凝固生长成冰晶。要形成冰晶首先要活化冰核,也就是使冰核能形成冰晶,不同冰核活化的温度不同。[注 2]温度下降后,活化的冰核数量增加。冰核活化后,由于伯杰龙效应(Bergeron effect),大气中的过冷的水蒸气会在冰核上凝华使冰核增长形成冰晶。以上的过程与大气中的温度和湿度有密切联系,在不同环境中形成的冰晶形状是有差异的。[注 3]在冰晶下降过程中会经过各种不同的温度和湿度的环境,因此最终形成的形状往往是各种基本形状的结合体。冰晶的大小与其在云层中停留的时间、温度和气压还有冰的过饱和程度有关。[8]

融化与破裂

冰晶受后转化为液态水的过程一般称为“融化”。大气中冰晶雪花的融化率决定了地表面上的降水类型。在下降过程中,冰晶经过0等温线时开始融化,大多数的冰晶在未融化时带有正电荷而融化时带电符号改变。

通过在处于不同融化阶段的冰晶置于-78.5℃的乙烷中冻结可以得知:冰晶融化的方式主要取决于晶体的初始类型,并可概括出两种基本方式:[9]

  • 柱状冰晶的融化:通常简单柱状冰晶开始时表面上的融化一致的,随后逐渐形成不同厚度的水层,在柱状晶的中心形成一个或两个明显的气泡,再进一步融化时,产生的水会形成一个清晰的水滴,附着在水滴上的柱状晶体快速进入水滴中,最终形成一个球形滴。柱状冰晶融化水有收缩成一个或多个水滴的趋势,且趋向于收缩至最小表面积
  • 板状冰晶的融化:板状冰晶融化时,融化水形成覆盖于板上的光滑圆面。而板状冰晶则没有缩成单个水滴的趋势,而是从板状冰晶融化的水层形成双凸镜带冰状,限定冰晶的周边。

中国气象学家龚乃虎于1982年在美国犹他大学做“为延长冰晶生长的微物理风洞实验”时获得了冰晶与温度、形状、大小、生长时间、下降速度及融化后质量的资料,并总结出冰晶在不同温度下融化的规律。[注 4]在该实验中获得的数据见下表:

垂直风洞内悬浮生长冰晶温度、生长时间、尺寸、含水量、融化后质量及破裂碎滴数[10]
温度 生长时间 尺寸(mm 含水量
(LWC)
质量μg 下落速度
cm/s
融化前后滴数 备注
2a c
-4.2 13 0.15 0.13 0.5 0.5 1:1 六角板
-4.5 19 0.1 0.7 0.5 2.15 1:3 鞘凇
-4.9 10 0.08 0.44 0.5 1.1 1:3 鞘状
-5.0 13 0.05 1.2 0.5 2.3 2:14 双针状
-5.1 19 0.22 0.42 0.5 1.15 36 3:4 三叠合针状
-6.2 19 0.50 0.48 0.5 8.18 54 2:1 双柱凇晶
-8.5 13 0.22 0.2 0.5 1.8 1:1 凇晶
-8.9 19 0.25 0.2 0.5 4.2 1:1 凇晶
-10.6 25 1.25 0.95 0.8 49 等距+凇晶
-11.4 19 0.45 0.54 0.8 8.18 1:2 六角凇晶
-12.3 19 0.9 0.5 0.8 11.5 1:1 六角扇凇晶
-14.7 10 1.7 - 0.8 8.62 1:18 分枝六角星

大气现象

冰晶是多种大气现象的成因,这些大气现象主要包括降水冰晕气温达-5℃时高空中便会形成六角形的冰针。同时,韦格纳–伯杰龙–芬德森过程(Wegener–Bergeron–Findeisen process)继续进行,过冷水蒸发产生的蒸气在冰晶上凝华。若冰晶周围水气多,则垂直于光轴的六个角增长较快,就形成板状冰晶;若冰晶周围较干燥,则平行于光轴的两个底面增长较快,便形成柱状冰晶;若水气适中,则形成片状雪花,上述三者都以降雪的形式落向地面。但如果地面气温较高,雪降落过程中冰晶会发生融化,并相互碰撞合并为雨滴,成为降雨

注释

  1. 王致君、楚荣忠. 偏振天气雷达在气象中的应用简介 (PDF). 干旱气象. 2004年6月, 22 (2): 62–68 (中文(简体)‎). 由于内许多水成物粒子都不是理想的球体,而且粒子的轴在空间分布上存在优势取向,所以可用偏振技术对其进行研究,这就是偏振气象雷达发展的理论基础。 [失效链接]
  2. 不同冰核及其活化温度:菱镁矿(-8℃)、高岭石(-9℃)、赤铁矿(-10℃)、马钱子碱(-11℃)、火山灰(-13℃)、黑云母(-14℃)、蛭石(-15℃)。
  3. 一般冰晶的形态与形成温度间的关系如下:板状或片状(0℃至-3℃、-9℃至-12℃、-18℃至-22℃)、针状(-3℃至-5℃)、柱状(-5℃至-9℃、-22℃以下)、星状(-12℃至-18℃)。
  4. 由龚乃虎等总结的冰晶在不同温度下融化的规律:
    • -4℃时,六角板状冰晶融化后仍为一个水滴;
    • -5℃时,因为针状或鞘状冰晶容易粘附,当增长时间长时会有凇附现象,所以在融化后能产生多个小水滴;
    • -7℃左右时,柱状冰晶融化呈椭球状并最终在张力作用下形成圆球水滴;
    • -l0℃左右时,等距冰晶融化形成一个圆形水滴,在过冷水层内,当增长时间变长时,这种冰晶由于下降速度大会凇附很多过冷水,融化后水滴质量大;
    • -l2℃左右时,六角板状冰晶融化为一个个水滴,若凇附有过冷水可形成一个大水滴或多个小水滴;
    • -l5℃时,分枝状冰雪晶融化后中心形成一个大水滴,六个分枝形成六个小水滴,分枝状冰晶质量增长快,且在接近熔点时易于攀附,往往在融化时发生碎裂形成多个小水滴。

参考文献

  1. Todd S. Glickman. Glossary of meteorology 2. American Meteorological Society. Jan 1, 2000. ISBN 978-1878220349. (原始内容存档于2008-03-16) (英语). 
  2. Philip Ball. H2O: a biography of water. Phoenix. Oct 2000. ISBN 978-0-753-81092-7 (英语). 
  3. Ancel St. John. The Crystal Structure of Ice (PDF). Proc Natl Acad Sci USA. Jul 1918, 4 (7): 193–197. PMC 1091441. PMID 16576297 (英语). 
  4. Sir W H Bragg. The Crystal Structure of Ice (PDF). Proc. Phys. Soc. London. 1921, 34 (98): 193–197. doi:10.1088/1478-7814/34/1/322 (英语). 
  5. D. M. Dennison. A Note on the Specific Heat of the Hydrogen Molecule (PDF). Roy. Soc. Proc., A. Jul 1, 1927, 115 (711): 483–486. doi:10.1098/rspa.1927.0105.  Communicated by R. H. Fowler(英文)
  6. D. M. Dennison. The Crystal Structure of Ice. Physical Review. 1921, 17 (1): 20–22. doi:10.1103/PhysRev.17.20 (英语). 
  7. 这组数据由大卫·马蒂亚斯·丹尼森摘自阿尔伯特·华莱士·赫尔(Albert Wallace Hull)对金属镁晶体研究的论文:A. W. Hull. The Crystal Structure of Magnesium (PDF). Proc Natl Acad Sci USA. Jul 1917, 3 (7): 470–473. PMC 1091290. PMID 16576242 (英语). 
  8. Ivan Dubé. From mm to cm... Study of snow/liquid water ratios in Quebec (PDF). Unpublished Manuscript. Dec 2003: 14–16 (英语). 
  9. Knight, Charles A. Observations of the Morphology of Melting Snow. Journal of Atmospheric Sciences. 1979, 36 (6): 1123–1132. doi:10.1175/1520-0469(1979)036<1123:OOTMOM>2.0.CO;2 (英语). 
  10. 龚乃虎. 关于冰晶雪花融化问题的研究——进展与展望. 高原气象. 1999年8月, 18 (3): 368–376 (中文(简体)‎).