打开主菜单

求真百科

纳米卫星

 纳米卫星

来自 搜狐网 的图片

中文名 :纳米卫星

水 平 :原子、分子或原子团、分子团

重 量 :几十公斤

纳米卫星是一种体型小的人造卫星。其采用MEMS(微型机电一体化系统)中的多重集成技术,利用大规模集成电路的设计思想和制造工艺,不仅把机械部件像电子电路一样集成起来,而且把传感器[1]、执行器、微处理器以及其他电学和光学系统都集成于一个极小的几何空间内,形成机电一体化[2]的、具有特定功能的卫星部件或分系统。

目录

发展历史

航天发展史上,由于受运载能力及技术水平的限制,早期研制的卫星都采用小卫星方案,其重量只有几十公斤。70年代末,由于大推力运载火箭的研制成功和设计与制造能力的提高,大型多功能卫星开始出现,卫星体积不断增大,功能也越来越复杂。随之而来的是成本不断攀升,风险逐渐增加。如一枚大力神/半人马座运载火箭连同所发射的侦察卫星价值可达10.5亿美元以上,一旦发射失败就会造成严重的损失。为此,航天界又将目光重新投向了小卫星。

美国于1993年首次提出纳米卫星的概念

纳米卫星采用MEMS(微型机电一体化系统)中的多重集成技术,利用大规模集成电路的设计思想和制造工艺,不仅把机械部件像电子电路一样集成起来,而且把传感器、执行器、微处理器以及其他电学和光学系统都集成于一个极小的几何空间内,形成机电一体化的、具有特定功能的卫星部件或分系统,使装置轻小、坚固,可靠性提高,从而出现更多优势:一是卫星具有可重组性;二是分布式的星座结构,可以大大提高卫星的生存能力;三是纳米卫星重量轻,可不使用大型运载工具进行发射,其成本可比一般卫星大大降低;四是分布式的星座结构,可以多次发射;五是纳米卫星的研制将不再需要大型的实验设施和高跨度厂房,而可以在大学、研究所的实验室里进行,给研制工作带来了极大的方便,也降低了研制费用。

纳米卫星虽然有非常诱人的前景和优势,但纳米卫星还停留在概念阶段,要想变成现实,还需解决一些技术问题:

发展纳米卫星的第一步,是利用其核心技术一MEMs使现有卫星分系统和部件微型化,研制有较强功能的微型卫星,然后再发展分布式的空间系统结构关键技术,最终实现超小型的纳米卫星。若在太阳同步轨道的18个等间隔的轨道面上,各自等间隔地布置36颗功能不同的纳米卫星(共648颗),就可保证在任何时刻、对地球上任何一点都能进行连续覆盖与监视,相当于三颗地球同步观测卫星的功能。若在太空的不同轨道上设置1000颗具有低功率(一瓦)发射机/接收机的纳米卫星,可构成一个相控阵雷达系统,能产生有很强方向性的一千瓦射频或微波波束。

从发展来看,采用MEMS技术使航天器制导、导航、控制系统小型化的工作已初露端倪。

纳米卫星的应用前景非常广阔,但要真正变成现实还有很长的路要走。

高级研究项目

1984年,美国国防高级研究项目局实施了全球低轨道信息中继(GLOMR)计划,在一年之内,以不到100万美元的投入制造了一颗数字式存储?转发型中继卫星。这颗星重67.5公斤,直径0.4米,自旋稳定,由美防御系统公司制造,1985年10月由航天飞机上的专用分离罐成功地弹射出去,1986年脱离轨道前完成了所赋予的任务。卫星以1.2千比特/秒的速率进行数据传输,发射机最大功率为10瓦,用于接收并传输设置在极地冰帽下的水下监视器采集的数据。它的研制和使用标志着小卫星重新获得了航天界的重视。

此后,国防高级研究项目局、美国航宇局、美海军以及一些大学和公司相继研制了一系列小卫星,如多路通信卫星(MACSAT,美国)、萨里大学星(UOSAT,英国)系列卫星、韩国电信局星(KETSAT)系列卫星、通信、记录与观测多功能自主试验卫星(MAESTRO,美国)、韦伯星(美)、信息包星(PACSAT,美)和卢萨特(LUSAT,阿根廷)等等,掀起了一股研制应用小卫星的热潮。

微电子技术发展

由于技术,特别是微电子技术的进步,新一代的小卫星采用了许多小型高性能电子部件,使得它们具有一些大型卫星才有的功能,并为小卫星进一步微型化,进而发展成微型卫星奠定了基矗如新型的数据传送微型卫星可以采用最新研制的效率为30%的串联太阳能电池覆盖整个卫星表面,在阳光直射时可获得8瓦的功率,从而解决动力问题,进一步减轻质量。如果能将所有的电子器件都集成在一个直径0.1米的硅圆片上,则这个圆片可以取代卫星主板而大大减轻质量。采用镁或复合材料代替铝,在电子系统中应用高密度组装技术,可使一颗业余无线电爱好者微型卫星质量从以前的10公斤减至5公斤,而且功能不受影响。

一般来说,小卫星重约10~500公斤,微型卫星的重量比小卫星低了一个数量级,重约0.1~10公斤。但无论是小卫星还是微型卫星,其设计思想均未脱离传统卫星设计的巢臼——一体式结构,即自身具有某种完整的实用功能,而在现有的技术条件下,一体式结构的卫星重量很难进一步减轻。若要使微型卫星进一步减轻重量,需要从设计思想上来一个根本性的变革,用一种前所未有的方法来设计卫星,采用分散的星座式结构。基于这种思想,美国宇航公司于1993年在一份研究报告中首次提出了纳米卫星的概念。

发展现状

纳米卫星系统

美国凭借其雄厚的技术基础已经走在小卫星发展的最前列。以美国防部高级研究计划局(DARPA)为首的军方一直对小卫星的发展寄予厚望,DARPA每年为小卫星发展投资3,500万美元。美国航宇局(NASA)也十分重视小卫星的发展,先后提出了“小卫星技术创新计划”和“新盛世计划”等一系列小卫星发展计划。

美国哥达德航天中心正在研制一种质量只有10kg的纳卫星,拟于2007年发射,用于研究日-地间的相互作用。届时,将由1枚德尔他-7925火箭同时把100颗这种卫星射入大偏心轨道。这些纳卫星将组成“磁层星座”,它们的近地点高度相同,均为12,750km,但远地点高度却不同,是从距地球表面312,000km的高度沿一条“线”向外延伸,这样就可以在不同高度同时测量地球磁层和等离子体的相互作用,这是当前用一二颗大卫星所做不到的。这种卫星的方案之一是制造直径为30cm、高10cm的圆筒形卫星,每颗卫星制造成本为50万美元

从本世纪初美国航宇局(NASA)就开始开发一系列新技术和新产品,如自动操作技术、微型遥感器和结构紧凑的小推力推进系统等,以使卫星实现微型化。另外,刘易斯研究中心在1998年提出了一项资金预算为2100万美元的5年计划,重点是开发能在严寒、酷热、腐蚀、强振动和高应力等恶劣环境下工作的微型系统。美国喷气推进实验室(JPL)也在与学术界、工业界以及NASA的其他中心合作,每年划拨400万美元用于微型机电系统研究。

美国还制定了“大学纳卫星”计划,该项计划是由美国国防部、NASA及企业界共同发起的,目的是研制并发射10颗“大学纳卫星”(重约10kg),以演示验证微型共性技术、编队飞行技术和分布式卫星功能等。美国空军科学研究局(AFOSR)和国防部高级研究计划局(DARPA)共同出资支持该计划,由各大学设计并组装出这10颗“大学纳卫星”。各大学将进行具有创新性的低成本空间试验,并探索纳卫星的军用价值,研究范围包括增强型通信技术、微型化传感器、姿态控制技术和机动性等。

2000年2月6日,美国用“绕轨皮卫星自动发射器”(OPAL)发射了国防部高级研究计划局(DARPA)的两颗皮卫星。该发射器(OPAL)是在此前的2000年1月26日与另外10颗卫星一起发射入轨的。这两颗皮卫星每颗质量小于230g,尺寸为10.2cm×7.6cm×2.5cm,彼此通过30m长的细绳连接。它们由美国航空航天公司研制,主要用于验证MEMS技术,并进行两星之间的通信以及与地面的通信试验。2月10日,卫星电池电力耗尽,试验结束。试验取得的主要成就包括:在轨释放皮卫星、用空间监视网实现对皮卫星的定位与跟踪、使皮卫星与地面碟状天线建立通信联系等。这次成功试验对未来天基防御技术有重要意义。

随着小卫星技术的逐渐成熟,美国先后在“天基红外预警”、“发现者-2”等计划中引入了大量小卫星,但是具体的部署方案尚在研究中。可见,美国军方正在以创新的军事概念,研究各种具有独特能力的小卫星系统。如分布式卫星系统,用于通信、导航、分布式雷达以及编队飞行光学干涉测量;用于天基感知的卫星系统,执行视觉和红外地球成像、多光谱地球成像和地图绘制、目标探测与跟踪等任务;预警小卫星系统,用于跟踪飞行中的洲际弹道导弹和潜射战略导弹及其弹头,并引导拦截弹截击目标;虚拟孔径小卫星系统,用于在军事行动中提高感知能力;“后勤”卫星系统,在轨执行补给任务等等。可以预见,在未来的军事行动中,将会大量应用小卫星系统完成其他军事系统无法执行的特殊任务。

参考文献