自动驾驶查看源代码讨论查看历史
自动驾驶 |
中文名: 自动驾驶系统 外文名: Automatic Operation 分 类: 计算机 自动化 功 能: 驾驶员执行的工作完全自动化 重要组成: 车地信息传输通道 目 标: 精确、安全、可靠 |
自动驾驶系统,系统采用先进的通信、计算机、网络和控制技术,对列车实现实时、连续控制。采用现代通信手段,直接面对列车,可实现车地间的双向数据通信,传输速率快,信息量大,后续追踪列车和控制中心可以及时获知前行列车的确切位置,使得运行管理更加灵活,控制更为有效,更加适应列车自动驾驶的需求。[1]
简介
自动驾驶系统是指列车驾驶员执行的工作完全自动化的、高度集中控制的列车运行系统。自动驾驶系统具备列车自动唤醒启动和休眠、自动出入停车场、自动清洗、自动行驶、自动停车、自动开关车门、故障自动恢复等功能,并具有常规运行、降级运行、运行中断等多种运行模式。实现全自动运营可以节省能源,优化系统能耗和速度的合理匹配。
自动驾驶系统要求建设的城市轨道交通在互联互通、安全、快捷、舒适性方面具有很高的水平.20世纪90年代以来,随着通信、控制和网络技术的发展,可以在地车之间实现大容量、双向的信息传输,为高密度、大运量的地铁系统成为真正意义上的自动驾驶系统提供了可能。
功能
自动驾驶系统的主要功能是地车的双向信息传输和运营组织的综合与应急处理。车地信息传输通道是列车运行自动控制系统的重要组成部分,自动控制系统的车载设备完全靠从地面控制中心接受的行车控制命令进行行车,实时监督列车的实际速度和地面允许的速度指令,当列车速度超过地面行车限速,车载设备将实施制动,保证列车的运行安全。
自动驾驶系统实现列车的自动启动及自动运行、车站定点停车、全自动驾驶自动折返、自动出入车辆段等功能,同时对列车上乘客状况、车厢状态、设备状态进行监视和检测,对列车各系统进行自动诊断,将列车设备状况及故障报警信息传送到控制中心,对各种故障和意外情况分门别类,做出处置预案。
通信控制选择
在城市轨道交通领域,列车自动控制系统的车地通信信道主要采用点式和连续式两种通信方式来实现列车与轨旁设备间的信息传输。地到车的信息主要是列车自动防护信息,车到地的信息主要是列车动态信息(包括列车位置、速度、驾驶模式、停车保证等)和车载信号设备及列车车辆相关状态信息等。
为了实现精确、安全、可靠的控车目标,要求车地通信通道具有高可靠性、安全性和兼容性.车地信息传输系统一般采用基于通信的多服务冗余数据传输系统,实现地车的双向信息传输.目前,主要的实现车地信息传输的方式有:感应环线,漏泄波导、漏缆,无线传输等。
关键技术
自动驾驶系统是一个汇集众多高新技术的综合系统,作为关键环节的环境信息获取和智能决策控制依赖于传感器技术、图像识别技术、电子与计算机技术与控制技术等一系列高新技术的创新和突破。无人驾驶汽车要想取得长足的发展,有赖于多方面技术的突破和创新。
自动驾驶系统相关的关键技术,包括环境感知、逻辑推理和决策、运动控制、处理器性能等。随着机器视觉(如3D摄像头技术)、模式识别软件(如光学字符识别程序)和光达系统(已结合全球定位技术和空间数据)的进步,车载计算机可以通过将机器视觉、感应器数据和空间数据相结合来控制汽车的行驶。可以说,技术的进步为各家汽车厂商“自动驾驶”的发展奠定了基石。另一方面,普及还存在一些关键技术问题需要解决,包括车辆间的通信协议规范,有人无人驾驶车辆共享车道的问题,通用的软件开发平台建立、多种传感器之间信息融合以及视觉算法对环境的适应性问题等。
在自动驾驶汽车研究方面,非汽车厂商表现抢眼,以谷歌自动驾驶汽车为例,在 2010年,谷歌公司在官方博客中宣布,正在开发自动驾 驶系统,到目前为止,谷歌已经申请和获得了多项相关专利,其无人驾驶汽车于 2012 年获得牌照上路,总驾驶里程已经超过了 48.3 万千米,并且几乎零事故发生率。谷歌自动驾驶汽车外部装置的核心是位于车顶的 64 束激光测距仪,能够提供 200 英尺以内精细的 3D 地图数据,无人驾驶车会把激光测到的数据和高分辨率的地图相结合,做出不同类型的数据模型以便在自动驾驶过程中躲避障碍物和遵循交通法规。安装在前挡风玻璃上的摄像头用于发现障碍物,识别街道标识和交通信号灯。GPS 模块、惯性测量单元以及车轮角度编码器用于监测汽车的位置并保证车辆行驶路线。汽车前后保险杠内安装有 4个雷达传感器(前方 3 个,后方 1 个),用于测量汽车与前(和前置摄像头一同配合测量) 后左右各个物体间的距离。在行进过程中,用导航系统输入路线,当汽车进入未知区域或者需要更新地图时, 汽车会以无线方式与谷歌数据中心通信,并使用感应器不断收集地图数据,同时也储存于中央系统,汽车行驶得越多,智能化水平就越高。
奥迪自动驾驶系统使用两个雷达探头、八个超声波探头和一个广视角摄像机,可以在设定的时间内,按照导航系统提供的信息,在最高 60km/h 的速度以下自主转向、加速和刹车,实现完全的自主驾驶。搭载奥迪自动驾驶系统的车型可以在交通拥挤的城市中起停自如,转向操作也十分灵活。在高速行驶中,能够及时根据前方车距来调整自己的速度。当前方出现险情时,奥迪自动驾驶车型能够及时刹车。
德国汉堡IBEO公司早在2007年开发了无人驾驶汽车。行驶过程中,车内安装的全球定位仪将随时获取汽车所在准确方位。隐藏在前灯和尾灯附近的激光雷达随时“观察”汽车周围 200 码(约 183米)内的道路状况,并通过全球定位仪路面导航系统构建三维道路模型。它能识别各种交通标识,保证汽车在遵守交通规则的前提下安全行驶,安装在汽车后备箱内的计算机将汇总、分析两组数据,并根据结果向汽车传达相应的行驶命令。
国内
国内从上世纪 80 年代开始着手自动驾驶系统的研制开发,虽与国外相比还有一些距离,但目前也取得了阶段性成果。国内国防科技大学、北京理工大学、清华大学、同济大学、上海交通大学、吉林大学等都有过无人驾驶汽车的研究项目。国防科技大学和中国一汽联合研发的红旗无人驾驶轿车高速公路试验成功。同济大学汽车学院建立了无人驾驶车研究平台,实现环境感知,全局路径规划,局部路径规划及底盘控制等功能的集成,从而使自动驾驶车具备自主 “思考 - 行动” 的能力,使无人驾驶车能完成融入交通流、避障、自适应巡航、 紧急停车(行人横穿马路等工况)、车道保持等无人驾驶功能。另一方面,为了促进自动驾驶系统技术创新,中国“未来挑战”无人驾驶车比赛受到更多的重视,对车的性能要求不断提高,包括更为实际的模拟环境,和更加复杂的控制要求。
事件
2021年8月14日晚上,一则蔚来车主发生车祸死亡的事件引发广泛关注。一个认证为“美一好”的公众号发布讣告称,美一好品牌管理公司创始人林文钦先生,驾驶蔚来ES8汽车启用自动驾驶功能(NOP领航状态)后,在沈海高速涵江段发生交通事故,不幸逝世。