求真百科欢迎当事人提供第一手真实资料,洗刷冤屈,终结网路霸凌。

多面体查看源代码讨论查看历史

事实揭露 揭密真相
跳转至: 导航搜索

多面体(polyhedron)是指三维空间中由平面和直边组成的几何形体。英文 polyhedron 源于古希腊语 πολύεδρον,由poly-(词根 πολύς,多)和 -hedron(έδρα,基底、座、面)构成,即意为“多面体”。

然而,“由平面和直边组成的有界体”的定义方式并不明确,对现代数学而言更是不合格。克罗地亚数学家 Grünbaum 曾评论道:“多面体理论的原罪可追溯至欧几里得,还有之后的开普勒、庞索、柯西……各个时期……数学家们都未能准确定义何谓‘多面体’。”自此,数学家虽以特定说法对“多面体”订定了严谨的定义,但任一种却都无法完全兼容其他定义方式。

定义

由若干个平面多边形围成的几何体叫做多面体[1]。围成多面体的多边形叫做多面体的面。两个面的公共边叫做多面体的棱。若干条棱的公共顶点叫做多面体的顶点。把多面体的任何一个面伸展,如果其他各面都在这个平面的同侧,就称这个多面体为凸多面体。多面体至少有4个面。多面体依面数分别叫做四面体、五面体、六面体等等。把一个多面体的面数记作F,顶点数记作V,棱数记作E,则F、E、V满足如下关系:F+V=E+2。

这就是关于多面体面数、顶点数和棱数的欧拉定理,每个面都是全等的正多边形的多面体叫做正多面体。每面都是正三角形的正多面体有正四面体、正八面体和正二十面体。每面都是正方形的多面体只有正六面体即正方体,每面都是正五边形的只有正十二面体。由欧拉定理可知一共只有这5种正多面体。

有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的多面体叫做棱柱(如图1)。两个互相平行的面叫棱柱的底面,其余各面叫棱柱的侧面,两个侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点。不在同一个面上的两个顶点的连线叫棱柱的对角线。两个底面间的距离叫做棱柱的高。侧棱不垂直于底面的棱柱叫做斜棱柱。侧棱垂直于底面的棱柱叫做直棱柱。底面是正多边形的直棱柱叫做正棱柱。底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……。容易看出棱柱的侧棱的长都相等,侧面都是平行四边形。两个底面与平行于底面的截面是全等的多边形。过不相邻的两条侧棱的截面是平行四边形。直棱柱的侧棱长与高相等,侧面及经过不相邻的两条侧棱的截面都是矩形。底面是平行四边形的四棱柱叫做平行六面体。底面是矩形的直平行六面体叫做长方体。棱长都相等的长方体叫做正方体。易见长方体的一条对角线的长的平方等于一个顶点上3条棱长的平方和,称垂直于侧棱并与每条侧棱都相交的截面为棱柱的直截面。斜棱柱的侧面积等于它的直截面的周长与侧棱长的乘积。直棱柱的底面是直截面,因此直棱柱的侧面积等于它的底面的周长与一条侧棱长的乘积。棱柱的体积等于它的底面积与高的乘积。

特征

面与面之间仅在棱处有公共点,且没有任何两个面在同一平面[2]

一个多面体至少有四个面。

经典多面体

在经典意义上,一个多面体是一个三维形体,它由有限个多边形面组成,每个面都是某个平面的一部分,面相交于边,每条边是直线段,而边交于点,称为顶点。立方体,棱锥和棱柱都是多面体的例子。多面体包住三维空间的一块有界体积;有时内部的体也视为多面体的一部分。一个多面体是多边形的三维对应。多边形,多面体和更高维的对应物的一般术语是多胞体。

视频

多面体 相关视频

多面体的结构特征
多面体的讲解

参考文献