電子顯微鏡 - 醫學用語(一種顯微鏡)檢視原始碼討論檢視歷史
電子顯微鏡 |
基本信息
電子顯微鏡,簡稱電鏡,英文名Electron Microscope(簡稱EM),經過五十多年的發展已成為現代科學技術中不可缺少的重要工具。電子顯微鏡由鏡筒、真空裝置和電源櫃三部分組成。
電子顯微鏡技術的應用是建立在光學顯微鏡的基礎之上的,光學顯微鏡的分辨率為0.2μm,透射電子顯微鏡的分辨率為0.2nm,也就是說透射電子顯微鏡在光學顯微鏡的基礎上放大了1000倍。
基本信息
中文名稱; 電子顯微鏡
外文名稱; electron microscope
簡稱; 電鏡
組成; 鏡筒、真空裝置和電源櫃
組成; 電子顯微鏡由鏡筒、真空裝置和電源櫃三部分組成。
鏡筒主要有電子源、電子透鏡、樣品架、熒光屏和探測器等部件,這些部件通常是自上而下地裝配成一個柱體。
電子透鏡用來聚焦電子,是電子顯微鏡鏡筒中最重要的部件。一般使用的是磁透鏡,有時也有使用靜電透鏡的。它用一個對稱於鏡筒軸線的空間電場或磁場使電子軌跡向軸線彎曲形成聚焦,其作用與光學顯微鏡中的光學透鏡(凸透鏡)使光束聚焦的作用是一樣的,所以稱為電子透鏡。光學透鏡的焦點是固定的,而電子透鏡的焦點可以被調節,因此電子顯微鏡不像光學顯微鏡那樣有可以移動的透鏡系統。現代電子顯微鏡大多採用電磁透鏡,由很穩定的直流勵磁電流通過帶極靴的線圈產生的強磁場使電子聚焦。電子源是一個釋放自由電子的陰極,柵極,一個環狀加速電子的陽極構成的。陰極和陽極之間的電壓差必須非常高,一般在數千伏到3百萬伏特之間。它能發射並形成速度均勻的電子束,所以加速電壓的穩定度要求不低於萬分之一。
樣品可以穩定地放在樣品架上,此外往往還有可以用來改變樣品(如移動、轉動、加熱、降溫、拉長等)的裝置。
探測器用來收集電子的信號或次級信號。
真空裝置用以保障顯微鏡內的真空狀態,這樣電子在其路徑上不會被吸收或偏向,由機械真空泵、擴散泵和真空閥門等構成,並通過抽氣管道與鏡筒相聯接。
電源櫃由高壓發生器、勵磁電流穩流器和各種調節控制單元組成。
編輯本段種類 電子顯微鏡按結構和用途可分為透射式電子顯微鏡、掃描式電子顯微鏡、反射式電子顯微鏡和發射式電子顯微鏡等。
透射式電子顯微鏡常用於觀察那些用普通顯微鏡所不能分辨的細微物質結構;掃描式電子顯微鏡主要用於觀察固體表面的形貌,也能與X射線衍射儀或電子能譜儀相結合,構成電子微探針,用於物質成分分析;發射式電子顯微鏡用於自發射電子表面的研究。
透射電子顯微鏡 因電子束穿透樣品後,再用電子透鏡成像放大而得名。它的光路與光學顯微鏡相仿,可以直接獲得一個樣本的投影。通過改變物鏡的透鏡系統人們可以直接放大物鏡的焦點的像。由此人們可以獲得電子衍射像。使用這個像可以分析樣本的晶體結構。在這種電子顯微鏡中,圖像細節的對比度是由樣品的原子對電子束的散射形成的。由於電子需要穿過樣本,因此樣本必須非常薄。組成樣本的原子的原子量、加速電子的電壓和所希望獲得的分辨率決定樣本的厚度。樣本的厚度可以從數納米到數微米不等。原子量越高、電壓越低,樣本就必須越薄。樣品較薄或密度較低的部分,電子束散射較少,這樣就有較多的電子通過物鏡光欄,參與成像,在圖像中顯得較亮。反之,樣品中較厚或較密的部分,在圖像中則顯得較暗。如果樣品太厚或過密,則像的對比度就會惡化,甚至會因吸收電子束的能量而被損傷或破壞。
透射電鏡的分辨率為0.1~0.2nm,放大倍數為幾萬~幾十萬倍。由於電子易散射或被物體吸收,故穿透力低,必須製備更薄的超薄切片(通常為50~100nm)。
透射式電子顯微鏡鏡筒的頂部是電子槍,電子由鎢絲熱陰極發射出、通過第一,第二兩個聚光鏡使電子束聚焦。電子束通過樣品後由物鏡成像於中間鏡上,再通過中間鏡和投影鏡逐級放大,成像於熒光屏或照相干版上。中間鏡主要通過對勵磁電流的調節,放大倍數可從幾十倍連續地變化到幾十萬倍;改變中間鏡的焦距,即可在同一樣品的微小部位上得到電子顯微像和電子衍射圖像。
掃描電子顯微鏡 掃描電子顯微鏡的電子束不穿過樣品,僅以電子束儘量聚焦在樣本的一小塊地方,然後一行一行地掃描樣本。入射的電子導致樣本表面被激發出次級電子。顯微鏡觀察的是這些每個點散射出來的電子,放在樣品旁的閃爍晶體接收這些次級電子,通過放大後調製顯像管的電子束強度,從而改變顯像管熒光屏上的亮度。圖像為立體形象,反映了標本的表面結構。顯像管的偏轉線圈與樣品表面上的電子束保持同步掃描,這樣顯像管的熒光屏就顯示出樣品表面的形貌圖像,這與工業電視機的工作原理相類似。由於這樣的顯微鏡中電子不必透射樣本,因此其電子加速的電壓不必非常高。
掃描式電子顯微鏡的分辨率主要決定於樣品表面上電子束的直徑。放大倍數是顯像管上掃描幅度與樣品上掃描幅度之比,可從幾十倍連續地變化到幾十萬倍。掃描式電子顯微鏡不需要很薄的樣品;圖像有很強的立體感;能利用電子束與物質相互作用而產生的次級電子、吸收電子和X射線等信息分析物質成分。
掃描電子顯微鏡的製造是依據電子與物質的相互作用。當一束高能的入射電子轟擊物質表面時,被激發的區域將產生二次電子、俄歇電子、特徵x射線和連續譜X射線、背散射電子、透射電子,以及在可見、紫外、紅外光區域產生的電磁輻射。同時,也可產生電子-空穴對、晶格振動(聲子)、電子振盪(等離子體)。
發展歷史 1926年漢斯·布什研製了第一個磁力電子透鏡。
1931年厄恩斯特·盧斯卡和馬克斯·克諾爾研製了第一台透視電子顯微鏡。展示這台顯微鏡時使用的還不是透視的樣本,而是一個金屬格。1986年盧斯卡為此獲得諾貝爾物理獎。
1934年鋨酸被提議用來加強圖像的對比度。
1937年第一台掃描透射電子顯微鏡推出。一開始研製電子顯微鏡最主要的目的是顯示在光學顯微鏡中無法分辨的病原體如病毒等。
1938年他在西門子公司研製了第一台商業電子顯微鏡。
1949年可透射的金屬薄片出現後材料學對電子顯微鏡的興趣大增。
1960年代透射電子顯微鏡的加速電壓越來越高來透視越來越厚的物質。這個時期電子顯微鏡達到了可以分辨原子的能力。
1980年代人們能夠使用掃描電子顯微鏡觀察濕樣本。
1990年代中電腦越來越多地用來分析電子顯微鏡的圖像,同時使用電腦也可以控制越來越複雜的透鏡系統,同時電子顯微鏡的操作越來越簡單。
參數
分辨率 分辨能力是電子顯微鏡的重要指標,電子顯微鏡的分辨能力以它所能分辨的相鄰兩點的最小間距來表示,即稱為該儀器的最高點分辨率:d=δ。顯然,分辨率越高,即d的數值(為長度單位)愈小,則儀器所能分清被觀察物體的細節也就愈多愈豐富,也就是說這台儀器的分辨能力或分辨本領越強。
分辨率與透過樣品的電子束入射錐角和波長有關。可見光的波長約為300~700納米,而電子束的波長與加速電壓有關。依據波粒二象性原理,高速的電子的波長比可見光的波長短,而顯微鏡的分辨率受其使用的波長的限制,因此電子顯微鏡的分辨率(0.2納米)遠高於光學顯微鏡的分辨率(200納米)。當加速電壓為50~100千伏時,電子束波長約為0.0053~0.0037納米。由於電子束的波長遠遠小於可見光的波長,所以即使電子束的錐角僅為光學顯微鏡的1%,電子顯微鏡的分辨本領仍遠遠優於光學顯微鏡。光學顯微鏡的最大放大倍率約為2000倍,而現代電子顯微鏡最大放大倍率超過300萬倍,所以通過電子顯微鏡就能直接觀察到某些重金屬的原子和晶體中排列整齊的原子點陣。
放大率 單就放大率(magnification)而言,是指被觀察物體經電子顯微鏡放大後,在同一方向上像的長度與物體實際長度的比值。這是兩條直線的比值,有人將放大率理解為像與物的面積比,這是一種誤解,勢必引起概念上的混淆和計算方法與結果上的混亂。
樣本處理
在使用透視電子顯微鏡觀察生物樣品前樣品必須被預先處理。隨不同研究要求的需要科學家使用不同的處理方法。
固定:為了儘量保存樣本的原樣使用戊二醛來硬化樣本和使用鋨酸來染色脂肪。 冷固定:將樣本放在液態的乙烷中速凍,這樣水不會結晶,而形成非晶體的冰。這樣保存的樣品損壞比較小,但圖像的對比度非常低。
脫干:使用乙醇和丙酮來取代水。
墊入:樣本被墊入後可以分割。
分割:將樣本使用金剛石刃切成薄片。
染色:重的原子如鉛或鈾比輕的原子散射電子的能力高,因此可被用來提高對比度。 使用透視電子顯微鏡觀察金屬前樣本要被
切成非常薄的薄片(約0.1毫米),然後使用電解擦亮繼續使得金屬變薄,最後在樣本中心往往形成一個洞,電子可以在這個洞附近穿過那裡非常薄的金屬。無法使用電解擦亮的金屬或不導電或導電性能不好的物質如硅等一般首先被用機械方式磨薄後使用離子打擊的方法繼續加工。為防止不導電的樣品在掃描電子顯微鏡中積累靜電它們的表面必須覆蓋一層導電層。
缺點
1.在電子顯微鏡中樣本必須在真空中觀察,因此無法觀察活樣本。隨着技術的進步,環境掃描電鏡將逐漸實現直接對活樣本的觀察;
2.在處理樣本時可能會產生樣本本來沒有的結構,這加劇了此後分析圖像的難度;
3.由於電子散射能力極 強,容易發生二次衍射等;
4.由於為三維物體的二維平面投影像,有時像不唯 一;
5.由於透射電子顯微鏡只能觀察非常薄的樣本,而有可能物質表面的結構與物質內部的結構不同;
6.超薄樣品(100納米以下),制樣過程複雜、困難,制樣有損傷;
7.電子束可能通過碰撞和加熱破壞樣本;
8.此外電子顯微鏡購買和維護的價格都比較高。
應用
以下列舉電鏡常見的應用(截至1984年),其在對外貿易和軍事等其他領域也有其用武之地 。
物理學 分子和原子形態的研究;晶體薄膜位錯和層錯的研究;表面物理現象的研究等 。
化學 高分子結構和性能方面的研究;一些有機複合材料的結構形態和添加劑的研究;催化劑的研究:各種無機物質性能、結構、雜質含盤的研究;甚至對一些化學反應過程的研究等 。
生物學 在分子生物學、分子遺傳學及遺傳工程方面的研究;昆蟲分類的研究:人工合成蛋白質方面的研究以及對各種細菌;病毒、噬菌體等微生物的研究 。
醫藥衛生 癌症發病機理的研究及早期診斷;藥理及病理學方面的研究;計劃生育和節育藥物的研究;對病毒及干擾素方面的研究以及臨床診斷等 。
電子顯微鏡技術在腫瘤診斷中的應用
因此,透射電子顯微鏡突破了光學顯微鏡分辨率低的限制,成為了診斷疑難腫瘤的一種新的工具。有研究報道,無色素性腫瘤、嗜酸細胞瘤、肌原性腫瘤、軟組織腺泡狀肉瘤及神經內分泌腫瘤這些在光鏡很難明確診斷的腫瘤,利用電鏡可以明確診斷電鏡主要是通過對超微結構的精細觀察,尋找組織細胞的分化標記,確診和鑑別相應的腫瘤類型。細胞凋亡與腫瘤有着密切的關係,電鏡對細胞凋亡的研究起着重要的作用,因此利用電鏡觀察細胞的超微結構病理變化和細胞凋亡情況,將為腫瘤的診斷和治療提供科學依據。
電子顯微鏡技術在腫瘤鑑別診斷中的應用
透射電子顯微鏡觀察的是組織細胞、生物大分子、病毒、細菌等結構,能夠觀察到不同病的病理結構,也可以鑑別一些腫瘤疾病,有研究報道電子顯微鏡技術通過超微結構觀察可以區分癌、黑色素瘤和肉瘤以及腺癌和間皮瘤;可區別胸腺瘤、胸腺類癌、惡性淋巴瘤和生殖細胞瘤;可區別神經母細胞瘤、胚胎性橫紋肌瘤、Ewing氏肉瘤、惡性淋巴瘤和小細胞癌;可區別纖維肉瘤、惡性纖維組織細胞瘤、平滑肌肉瘤和惡性神經鞘瘤以及區別梭形細胞癌和癌肉瘤。
地質與考古 地層的研究、分析、識別:礦石的分析研究:化石、古屍、古瓷及各種出土文物的分析研究:文物古董的真偽鑑別等 。
冶金 精密合金的性能和工藝研究;鋼鐵材料斷口分析和夾雜物成分及分布的分析研究;耐高溫、高強度金屬材料及超導材料等的研究;金相分析等 。
摺疊電子元件 各種半導體器件如超大規模集成電路等的失效分析和性能檢查;硅單晶等各種半導體材料性能的分析研究;各種開關、電位器.接插件的可靠性研究及耐久性分析;錄音磁帶.磁粉晶形的分析檢查等 。
機械工業 熱處理工藝、焊接工藝、鑄造工藝等等的研究;破損機件的斷口分析等 。
石油化工 油田岩芯的研究分析:石油製品性能結構的研究和成分分析;催化劑的研究等等 。
紡織、輕工業 羊毛纖維、紙張和糧食等的質量評定;畲成纖維性能的研究:感光膠片的乳劑的研究等等 。
硅酸鹽及無機材料 各種陶瓷、玻璃、雲母、石墨、人造金剛石及新型建築材料的性能結構和工藝研究和成分分析 。
原子能 放射性同位素以及反應堆所用特殊材料的研究分析 。
航空和空間技術 航空和宇航特種材料的研究:高空生理和太空生理的研究;宇宙物質的研究分析等 。
農林、畜牧 由於植物病毒引起的糧食、果樹、煙草等作物的病害的防治研究;家畜、家禽、戰馬等發生癌病的動物病毒的研究;雜交優勢以及誘發突變的研究 。
法學 刑事案件中對屍體、假幣、鎖鑰。兇器及各種作案工具的判別與分析,為破案提供充分的證據 。
環境保護 大氣或水中的固體粉塵、微粒的分析研究和粒度測定等 。[1]