余切函数查看源代码讨论查看历史
余切函数 |
中文名;余切函数 表达式;f(x)=cotx 外文名;cot 领 域;三角函数 |
在直角三角形中,某锐角的相邻直角边和相对直角边的比,叫做该锐角的余切。余切与正切互为倒数,用“cot+角度”表示。余切函数的图象由一些隔离的分支组成(如图)。余切函数是无界函数,可取一切实数值,也是奇函数和周期函数,其最小正周期是π。[1]
定义
任意角终边上除顶点外的任一点的横坐标除以该点的非零纵坐标,角的顶点与平面直角坐标系的原点重合,而该角的始边则与正x轴重合。简单点理解:直角三角形任意一锐角的邻边和对边的比,叫做该锐角的余切。
余切表示用“cot+角度”,如:30°的余切表示为cot 30°;角A的余切表示为cot A。旧时用ctg A来表示余切,和cot A是一样的。假设∠A的对边为a、邻边为b,那么cot A= b/a(即邻边比对边)。
历史发展
叙利亚天文学家、数学家阿尔巴坦尼(850-929)于920年左右,制成了自0到90度相隔1度的余切表。
14世纪中叶,成吉思汗的后裔,中亚细亚的阿鲁伯(1393--1449)组织了大规模的天文观测和数学用表的计算,他的正弦表精确到小数9位,他还制作了30到45度之间相隔为1",45到90度的相隔为5"7'的正切表。
英国数学家、坎特伯雷大主教布拉瓦丁(1290-1349)首先把正切、余切引入他的三角计算之中。
图像及性质
余切函数的函数图像如图2所示,其主要性质如下:
(1)定义域:余切函数的定义域是;
(2)值域:余切函数的值域是实数集R,没有最大值、最小值;
(3)周期性:余切函数是周期函数,周期是;
(4)奇偶性:余切函数是奇函数,它的图像关于原点对称;
(5)单调性:余切函数在每一个开区间
上都是减函数。
然后由泰勒级数得出
“余切序列”是蝴蝶效应的一个典型例子。以下三个数列每一项都是前一项的余切,即;初值分别为1、1.00001、1.0001,但是从第10项开始,三个数列开始形成巨大的分歧。这就是混沌的数列,经过足够多项后,得到的数字完全可以看作是随机的,混沌的。
参考来源