求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

回旋加速器檢視原始碼討論檢視歷史

事實揭露 揭密真相
前往: 導覽搜尋
回旋加速器
圖片來自百度

迴旋加速器是一種粒子加速器。迴旋加速器通過高頻交流電壓來加速帶電粒子。大小從數英吋到數公尺都有。它是由歐內斯特·勞倫斯於1929年在柏克萊加州大學發明。

許多原子核、基本粒子的性質有關的資訊,均是利用高能粒子轟擊原子靶(atomic target)而獲得的。1932年,約翰·柯克勞夫歐內斯特·沃吞在英國製造了第一台「原子擊破器」(atom smasher)。他們乃是利用700,000V的高電壓對質子加速,然後再拿它們轟擊鋰靶。

他們採用的方法雖然較為野蠻,但確實是建構出了這麼個高電壓。在1929年時,勞倫斯就已經考慮過這種可能性:將粒子重複地經由一「相對小電壓」做加速,而不是一次就用一個巨大電壓去做加速。他於是與李明斯頓(M.S.Livingston)合作,發展出了迴旋加速器(cyclotron)。第一部迴旋加速器建於1930年,稍後的改良則於1934年完成。

回旋加速器的基本構成是兩個處於磁場中的半圓D型盒和D型盒之間的交變電場[1] 。帶電粒子在電場的作用下加速進入磁場,由於受到洛倫茲力F=Bqv(其中B為磁感應強度,q為帶電粒子所帶電荷)而進行勻速圓周運動,每運動到兩個D型盒之間的電場時在電場力作用下加速,之後再次進入磁場進行勻速圓周運動。在不考慮愛因斯坦狹義相對論時,由於在磁場中迴旋半徑R=mv/Bq與速度成正比,故當迴旋半徑大於回旋加速器半徑時,帶電粒子達到最大速度。實際上,根據狹義相對論,帶電粒子的質量隨速度的增加而增加,故實際應用中帶電粒子的迴旋周期並非恆定。

補充

尋找組成宇宙萬物的最基本粒子一直是科學家孜孜不怠的目標──而這完全取決於有什麼工具可用。一開始只能依賴具有放射性天然礦物拉塞福就是用精煉後的所發射出來的α 粒子轟炸金箔,才發現原子核。再來是靠宇宙射線;安德森就是從中發現正子。然而這兩種方式都是靠天吃飯,不但粒子來源不穩定,更重要的,因為先天的能量侷限,無法再深入探究;於是拉塞福在 1927 年大聲疾呼物理學家要找出天然放射性以外的高能粒子來源。

最直接的方當然是用高壓電加速帶電粒子。第二年,留學德國的挪威籍物理學家威德羅(Rolf Widerøe)就率先設計出直線加速器。但是要建造百萬伏特以上的高壓電所費不貲,運作成本也相當高昂,還有漏電的危險;若要再往上提高電壓,這些不利因素形成的障礙將更難克服。難道別無他法嗎?不到三十歲的美國物理學家勞倫斯(Ernest Lawrence, 1901-1958)想出了一個方法。

勞倫斯 24 歲就取得博士學位,29 歲成為加州理工學院有史以來最年輕的正教授,一直是備受矚目的年輕學者。1929 年春天,他在圖書館翻閱期刊時,看到威德羅的一篇論文;雖然勞倫斯只懂一點德文,但他從插圖看得出來是在直線加速器上用許多電場多次加速粒子。勞倫斯計算了加速到一百萬電子伏特所需的距離,發現遠超過實驗室的大小;他想著怎樣才能讓粒子加速器擺得進實驗室,忽然靈機一動:把直線改成螺旋狀,用磁場引導帶電粒子的行進方向,如此就能縮小加速器的尺寸,而且僅需一對電極就能在粒子每次經過時予以加速,而逐步推昇至極高的能量。

1931 年元月,勞倫斯的研究生李文斯頓(Stanley Livingston)打造出直徑僅 4.5 吋的迴旋加速器,只用一千八百伏特的電壓就把氫離子加速到八萬電子伏特。他們接著打造 11 吋的迴旋加速器;1931 年 8 月 3 日這一天,李文斯頓成功加速到一百一十萬電子伏特的里程碑,證明了迴旋加速器的潛力。

科學家終於有了前所未有的利器,得以進行過去難以想像的粒子物理實驗;勞倫斯因此獲得 1939 年的諾貝爾物理獎。1945 年,勞倫斯實驗室裡的麥克米蘭(Edwin McMillan)針對粒子質量會隨著速度提高而增加的相對論效應,打造出同步加速器,再次突破迴旋加速器的能量瓶頸。如今,大強子對撞機(LHC)的能量高達萬億電子伏特以上,周長 27 公里,已非勞倫斯當初在圖書館畫下迴旋加速器的草圖時,所能想像的了。

參考文獻

  1. 交變電場,知乎