求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

「约瑟夫·拉格朗日」修訂間的差異檢視原始碼討論檢視歷史

事實揭露 揭密真相
前往: 導覽搜尋
(创建页面,内容为“约瑟夫·拉格朗日(Joseph-Louis Lagrange,1736~1813)全名为约瑟夫·路易斯·拉格朗日,法国著名数学家、物理学家。 1736年1月25日…”)
 
行 1: 行 1:
 约瑟夫·拉格朗日(Joseph-Louis Lagrange,1736~1813)全名为约瑟夫·路易斯·拉格朗日,法国著名数学家、物理学家。
+
 
1736年1月25日生于意大利都灵,1813年4月10日卒于巴黎。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。
+
{{Infobox person 
 +
| 姓名    =   约瑟夫·拉格朗日
 +
| 外文名    =  Joseph Lagrange
 +
| 图像    = 
 +
[[File: 约瑟夫·拉格朗日.jpg|缩略图|center |[http://p2.so.qhimgs1.com/bdr/540__/t019e9905b290d89c1e.jpg 原图链接]  [http://www.sohu.com/a/128275497_609573 来自搜狐网]]]
 +
| 出生日期 = {{birth date |1736|01|25}} 
 +
| 出生地点 =   意大利都灵
 +
| 逝世日期 = {{Death date and age|1813|04|11|1736|01|25}}
 +
| 国籍    =   法国
 +
| 获得荣誉    =   腓特烈大帝称做“欧洲最伟大的数学家             
 +
| 职业    =   数学家、天文学家
 +
| 主要贡献 =   拉格朗日中值定理,创立了拉格朗日力学
 +
}}
 +
== 基本信息 ==
 +
* '''中文姓名:'''约瑟夫·拉格朗日<br>
 +
* '''外文名称:'''Joseph Lagrange<br>
 +
* '''国    籍:''' [[法国]]<br>
 +
* '''祖    籍:''' <br>
 +
* '''出 生 地:'''意大利都灵<br>
 +
* '''出生日期:'''1736年1月25日<br>
 +
* '''职    业:'''数学家、天文学家<br>
 +
* '''获得荣誉:'''腓特烈大帝称做“欧洲最伟大的数学家<br>
 +
* '''主要贡献:'''拉格朗日中值定理,创立了拉格朗日力学<br>
 +
* '''其它作品:'''<br>
 +
== 约瑟夫·拉格朗日 ==
 +
'''<big>约瑟夫·拉格朗日</big>''' (Joseph-Louis Lagrange,1736~1813)全名为约瑟夫·路易斯·拉格朗日,[[ 法国]] 著名[[ 数学家]] [[ 物理学家]]
 +
1736年1月25日生于[[ 意大利]] 都灵,1813年4月10日卒于巴黎。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出
 +
拉格朗日曾为普鲁士腓特烈大帝在柏林工作了20年,被腓特烈大帝称做“欧洲最伟大的数学家”,后受法国国王路易十六的邀请定居巴黎直至去世。拉格朗日一生才华横溢,在数学、物理和天文等领域做出了很多重大的贡献,其中尤以数学方面的成就最为突出。他的成就包括著名的拉格朗日中值定理,创立了拉格朗日力学等等。1813年4月3日,[[拿破仑]]授予他帝国大[[十字勋章]],但此时的拉格朗日已卧床不起,4月11日早晨,[[拉格朗日]]逝世。
 +
== 生平经历 ==
 +
拉格朗日父亲是法国陆军骑兵里的一名军官,后由于经商破产,家道中落。据拉格朗日本人回忆,如果幼年时家境富裕,他也就不会作数学研究了,因为父亲一心想把他培养成为一名[[律师]]。拉格朗日个人却对法律毫无兴趣。
 +
 
 +
18岁时,拉格朗日用[[意大利语写了第一篇论文,是用[[牛顿二项式定理处理两函数乘积的高阶微商,他又将论文用拉丁语写出寄给了当时在柏林科学院任职的数学家欧拉。不久后,他获知这一成果早在半个世纪前就被莱布尼兹取得了。这个并不幸运的开端并未使拉格朗日灰心,相反,更坚定了他投身数学分析领域的信心。
 +
 
 +
拉格朗日也是分析力学的创立者。拉格朗日在其名著《[[分析力学]]》中,在总结历史上各种力学基本原理的基础上,发展达朗贝尔、欧拉等人研究成果,引入了势和等势面的概念,进一步把数学分析应用于质点和刚体力学,提出了运用于静力学和动力学的普遍方程,引进广义坐标的概念,建立了拉格朗日方程,把力学体系的运动方程从以力为基本概念的牛顿形式,改变为以能量为基本概念的分析力学形式,奠定了分析力学的基础,为把力学理论推广应用到物理学其他领域开辟了道路。
 +
1755年拉格朗日19岁时,在探讨数学难题“等周问题”的过程中,他以欧拉的思路和结果为依据,用纯分析的方法求变分极值。第一篇论文“极大和极小的方法研究”,发展了欧拉所开创的变分法,为变分法奠定了理论基础。变分法的创立,使拉格朗日在都灵声名大震,并使他在19岁时就当上了都灵皇家炮兵学校的教授,成为当时欧洲公认的第一流数学家。1756年,受欧拉的举荐,拉格朗日被任命为普鲁士科学院通讯院士。
 +
 
 +
1764年,法国科学院悬赏征文,要求用万有引力解释月球天平动问题,他的研究获奖。接着又成功地运用微分方程理论和近似解法研究了科学院提出的一个复杂的六体问题(木星的四个卫星的运动问题),为此又一次于1766年获奖。
 +
 
 +
1766年德国的腓特烈大帝向拉格朗日发出邀请时说,在“欧洲最大的王”的宫廷中应有“欧洲最大的数学家”。于是他应邀前往柏林,任普鲁士科学院数学部主任,居住达20年之久,开始了他一生科学研究的鼎盛时期。在此期间,他完成了《分析力学》一书,这是牛顿之后的一部重要的经典力学著作。书中运用变分原理和分析的方法,建立起完整和谐的力学体系,使力学分析化了。他在序言中宣称:力学已经成为分析的一个分支。
 +
 
 +
1783年,拉格朗日的故乡建立了"都灵科学院",他被任命为名誉院长。1786年腓特烈大帝去世以后,他接受了法王路易十六的邀请,离开柏林,定居巴黎,直至去世。
 +
 
 +
这期间他参加了巴黎科学院成立的研究法国度量衡统一问题的委员会,并出任法国米制委员会主任。1799年,法国完成统一度量衡工作,制定了被世界公认的长度、面积、体积、质量的单位,拉格朗日为此做出了巨大的努力。
 +
 
 +
1791年,拉格朗日被选为英国皇家学会会员,又先后在巴黎高等师范学院和巴黎综合工科学校任数学教授。1795年建立了法国最高学术机构——法兰西研究院后,拉格朗日被选为科学院数理委员会主席。此后,他才重新进行研究工作,编写了一批重要著作:《论任意阶数值方程的解法》、《解析函数论》和《函数计算讲义》,总结了那一时期的特别是他自己的一系列研究工作。
 +
 
 +
1813年4月3日,拿破仑授予他帝国大十字勋章,但此时的拉格朗日已卧床不起,4月11日早晨,拉格朗日逝世
 +
== 主要成就 ==
 +
拉格朗日在数学、力学和天文学三个学科中都有重大历史性贡献,但他主要是数学家,研究力学和天文学的目的是表明数学分析的威力。全部著作、论文、学术报告记录、学术通讯超过500篇。
 +
 
 +
拉格朗日的学术生涯主要在18世纪后半期。当对数学、物理学和天文学是自然科学主体,数学的主流是由微积分发展起来的数学分析,以欧洲大陆为中心;物理学的主流是力学;天文学的主流是天体力学,数学分析的发展使力学和天体力学深化,而力学和天体力学的课题又成为数学分析发展的动力,当时的自然科学代表人物都在此三个学科做出了历史性重大贡献。
 +
* 月球问题
 +
拉格朗日总结了18世纪的数学成果,同时又为19世拉格朗日点[1]纪的数学研究开辟了道路,堪称法国最杰出的数学大师。同时,他的关于月球运动(三体问题)、行星运动、轨道计算、两个不动中心问题、流体力学等方面的成果,在使天文学力学化、力学分析化上,也起到了历史性的作用,促进了力学和天体力学的进一步发展,成为这些领域的开创性或奠基性研究。
 +
 
 +
* 方程解法
 +
在柏林工作的前十年,拉格朗日把大量时间花在代数方程和超越方程的解法上,作出了有价值的贡献,推动了代数学的发展。他提交给柏林科学院两篇著名的论文:《关于解数值方程》和《关于方程的代数解法的研究》。把前人解三、四次代数方程的各种解法,总结为一套标准方法,即把方程化拉格朗日点[2]为低一次的方程(称辅助方程或预解式)以求解。
 +
 
 +
* 他置换群
 +
试图寻找五次方程的预解函数,希望这个函数是低于五次的方程的解,但未获得成功。然而,他的思想已蕴含着置换群概念,对后来阿贝尔和伽罗华起到启发性作用,最终解决了高于四次的一般方程为何不能用代数方法求解的问题。因而也可以说拉格朗日是群论的先驱。
 +
 
 +
* 数论
 +
在数论方面,拉格朗日也显示出非凡的才能。他对费马提出的许多问题作出了解答。如,一个正整数是不多于4个平方数的和的问题等等,他还证明了圆周率的无理性。拉格朗日的这些研究成果丰富了数论的内容。
 +
 
 +
* 幂级数
 +
在《解析函数论》以及他早在1772年的一篇论文中,在为微积分奠定理论基础方面作了独特的尝试,他企图把微分运算归结为代数运算,从而抛弃自牛顿以来一直令人困惑的无穷小量,并想由此出发建立全部分析学。但是由于他没有考虑到无穷级数的收敛性问题,他自以为摆脱了极限概念,其实只是回避了极限概念,并没有能达到他想使微积分代数化、严密化的目的。不过,他用幂级数表示函数的处理方法对分析学的发展产生了影响,成为实变函数论的起点。
 +
 
 +
* 分析力学
 +
拉格朗日也是分析力学的创立者。拉格朗日在其名著《分析力学》中,在总结历史上各种力学基本原理的基础上,发展达朗贝尔、欧拉等人研究成果,引入了势和等势面的概念,进一步把数学分析应用于质点和刚体力学,提出了运用于静力学和动力学的普遍方程,引进广义坐标的概念,建立了拉格朗日方程,把力学体系的运动方程从以力为基本概念的牛顿形式,改变为以能量为基本概念的分析力学形式,奠定了分析力学的基础,为把力学理论推广应用到物理学其他领域开辟了道路。
 +
 
 +
* 拉格朗日方法
 +
他还给出刚体在重力作用下,绕旋转对称轴上的定点转动(拉格朗日陀螺)的欧拉动力学方程的解,对三体问题的求解方法有重要贡献,解决了限制性三体运动的定型问题。拉格朗日对流体运动的理论也有重要贡献,提出了描述流体运动的拉格朗日方法。
 +
 
 +
* 行星问题
 +
拉格朗日的研究工作中,约有一半同天体力学有关。他用自己在分析力学中的原理和公式,建立起各类天体的运动方程。在天体运动方程的解法中,拉格朗日发现了三体问题运动方程的五个特解,即拉格朗日平动解。此外,他还研究了彗星和小行星的摄动问题,提出了彗星起源假说等。
 +
 
 +
* 数学领域荣誉
 +
“三L”
 +
法国18世纪后期到19世纪初数学界著名的三个人物:拉格朗日(josephlouislagrange)、拉普拉斯(pierre-simonlaplace)和勒让德(adrien-marielegendre)三个人的姓氏的第一个字母为“L”,又生活在同一时代,所以人们称他们为“三L”。
 +
== 数学贡献 ==
 +
拉格朗日科学研究所涉及的领域极其广泛。他在数学上最突出的贡献是使数学分析与几何与力学脱离开来,使数学的独立性更为清楚,从此数学不再仅仅是其他学科的工具。
 +
 
 +
拉格朗日总结了18世纪的数学成果,同时又为19世纪的数学研究开辟了道路,堪称法国最杰出的数学大师。同时,他的关于月球运动(三体问题)、行星运动、轨道计算、两个不动中心问题、流体力学等方面的成果,在使天文学力学化、力学分析化上,也起到了历史性的作用,促进了力学和天体力学的进一步发展,成为这些领域的开创性或奠基性研究。
 +
 
 +
在柏林工作的前十年,拉格朗日把大量时间花在代数方程和超越方程的解法上,作出了有价值的贡献,推动了代数学的发展。他提交给柏林科学院两篇著名的论文:《关于解数值方程》和《关于方程的代数解法的研究》 。把前人解三、四次代数方程的各种解法,总结为一套标准方法,即把方程化为低一次的方程(称辅助方程或预解式)以求解。
 +
 
 +
他试图寻找五次方程的预解函数,希望这个函数是低于五次的方程的解,但未获得成功。然而,他的思想已蕴含着置换群概念,对后来阿贝尔和伽罗华起到启发性作用,最终解决了高于四次的一般方程为何不能用代数方法求解的问题。因而也可以说拉格朗日是群论的先驱。
 +
 
 +
在数论方面,拉格朗日也显示出非凡的才能。他对[[费马]]提出的许多问题作出了解答。如,一个正整数是不多于4个平方数的和的问题等等,他还证明了圆周率的无理性。这些研究成果丰富了数论的内容。
 +
 
 +
在《解析函数论》以及他早在1772年的一篇论文中,在为微积分奠定理论基础方面作了独特的尝试,他企图把微分运算归结为代数运算,从而抛弃自牛顿以来一直令人困惑的无穷小量,并想由此出发建立全部分析学。但是由于他没有考虑到无穷级数的收敛性问题,他自以为摆脱了极限概念,其实只是回避了极限概念,并没有能达到他想使微积分代数化、严密化的目的。不过,他用幂级数表示函数的处理方法对分析学的发展产生了影响,成为实变函数论的起点。
 +
 
 +
近百余年来,数学领域的许多新成就都可以直接或间接地溯源于拉格朗日的工作。所以他在数学史上被认为是对分析数学的发展产生全面影响的数学家之一。被誉为“欧洲最大的数学家”。
 +
== 力学贡献 ==
 +
拉格朗日在数学、力学和天文学三个学科中都有重大历史性贡献,但他主要是数学家,研究力学和天文学的目的是表明数学分析的威力。全部著作、论文、学术报告记录、学术通讯超过500篇。
 +
 
 +
拉格朗日的学术生涯主要在18世纪后半期。当对数学、物理学和天文学是自然科学主体。数学的主流是由微积分发展起来的数学分析,以欧洲大陆为中心;物理学的主流是力学;天文学的主流是天体力学。数学分析的发展使力学和天体力学深化,而力学和天体力学的课题又成为数学分析发展的动力。当时的自然科学代表人物都在此三个学科做出了历史性重大贡献。下面就拉格朗日的主要贡献分别评述。
 +
 
 +
他还给出刚体在重力作用下,绕旋转对称轴上的定点转动(拉格朗日陀螺)的欧拉动力学方程的解,对三体问题的求解方法有重要贡献,解决了限制性三体运动的定型问题。拉格朗日对流体运动的理论也有重要贡献,提出了描述流体运动的拉格朗日方法。
 +
 
 +
拉格朗日的研究工作中,约有一半同天体力学有关。他用自己在分析力学中的原理和公式,建立起各类天体的运动方程。在天体运动方程的解法中,拉格朗日发现了三体问题运动方程的五个特解,即拉格朗日平动解。此外,他还研究了彗星和小行星的摄动问题,提出了彗星起源假说等。
 +
* 数学
 +
 
 +
数学分析的开拓者
 +
 
 +
牛顿和莱布尼兹以后的欧洲数学分裂为两派。英国仍坚持牛顿在《自然哲学中的数学原理》中的几何方法,进展缓慢;欧洲大陆则按莱布尼兹创立的分析方法(当时包括代数方法),进展很快,当时叫分析学(analysis)。拉格朗日是仅次于欧拉的最大开拓者,在18世纪创立的主要分支中都有开拓性贡献。
 +
 
 +
* 变分法
 +
 
 +
这是拉格朗日最早研究的领域,以欧拉的思路和结果为依据,但从纯分析方法出发,得到更完善的结果。他的第一篇论文“极大和极小的方法研究”(Recherches sur la méthode demaximis et minimies)是他研究变分法的序幕; 1760年发表的“关于确定不定积分式的极大极小的一种新方法”(Essai d'unenouvelle méthode pour déterminer les maxima et les minima desformules integrales indéfinies)是用分析方法建立变分法的代表作。发表前写信给欧拉时,称此文中的方法为“变分方法”(themethod of variation)。欧拉肯定了,并在他自己的论文中正式将此方法命名为“变分法”(the calculus of variation)。变分法这个分支才真正建立起来。
 +
 
 +
拉格朗日方法是对积分进行极值化,函数y=y(x)待定。他不像欧拉和前人用改变极大或极小化曲线的个别坐标的办法,而是引进通过端点(x1,y1),(x2,y2)的新曲线y(x)+δy(x),δy(x)叫曲线y(x)的变分。J相应的增量△J按δy,δy′展开的一、二阶项叫一次变分δJ和二次变分δ2J。他用分析方法证明了δJ为零的必要条件就是欧拉方程
 +
 
 +
他达继续讨论了端点变动时的情况以及两个自变量的重积分的情况,使这个分支继续发展。1770年以后,拉格朗日达研究了被积函数f包含高阶导数的单重和多重积分时的情况,已发展成为变分法的标准内容。
 +
 
 +
* 微分方程
 +
 
 +
早在都灵时期,拉格朗日就对变系数常微分方程研究做出重大成果。他在降阶过程中提出了以后所称的伴随方程,并证明了非齐次线性变系数方程的伴随方程的伴随方程,就是原方程的齐次方程。他还把欧拉关于常系数齐次方程的结果推广到变系数情况,证明了变系数齐次方程的通解可用一些独立特解乘上任意常数相加而成;而且在知道方程的m个特解后,可以把方程降低m价。
 +
 
 +
在柏林时期,他对常微分方程的奇解和特解做出历史性贡献,在1774年完成的“关于微分方程特解的研究”(Sur les intégralesparticulieres des equations différentielles)中系统地研究了奇解和通解的关系,明确提出由通解及其对积分常数的偏导数消去常数求出奇解的方法;还指出奇解为原方程积分曲线族的包络线。当然,他的奇解理论还不完善,现代奇解理论的形式是由G.达布(Darboux)等人完成的。
 +
 
 +
常微分方程组的研究在当时结合天体力学中的课题进行。拉格朗日在1772年完成的“论三体问题”(Essai sur le problémedes trois corps)中,找出了三体运动的常微分方程组的五个特解:三个是三体共线情况;两个是三体保持等边三角形;在天体力学中称为拉格朗日平动解。他同拉普拉斯一起完善的任意常数变异法,对多体问题方程组的近似解有重大作用,促进了摄动理论的建立。
 +
 
 +
拉格朗日是一阶偏微分方程理论的建立者,他在1772年完成的。“关于一阶偏微分方程的积分”(Sur l'integration des équationau differences partielles du premier order)和1785年完成的“一阶线性偏微分方程的一般积分方法”(Méthode génèrale pourintégrer les equations partielles du premier order lorsque cesdifferences ne sont que linèaires)中,系统地完成了一阶偏微分方程的理论和解法。
 +
 
 +
他首先提出了一阶非线性偏微分方程的解分类为完全解、奇解、通积分等,并给出它们之间的关系。后来又进一步证明了解线性方程Pp+Qq=R(P,Q,R为x,y,z的函数)(5)与解等价,而解(6)式又与解常微分方程组等价。(5)式至今仍称为拉格朗日方程。有趣的是,由上面已可看出,一阶非线性偏微分方程,可以化为解常微分方程组。但拉格朗日自己却不明确,他在1785年解一个特殊的一阶偏微分方程时,还说不能用这种方法,可能他忘记了自己在1772年的结果。现代也有时称此方法为拉格朗日方法,又称为柯西(Cauchy)的特征方法。因拉格朗日只讨论两个自变量情况,在推广到n个自变量时遇到困难,而后来由柯西在1819年克服。
 +
 
 +
* 方程论
 +
 
 +
18世纪的代数学从属于分析,方程论是其中的活跃领域。拉格朗日在柏林的前十年,大量时间花在代数方程和超越方程的解法上。
 +
 
 +
他在代数方程解法中有历史性贡献。在长篇论文“关于方程的代数解法的思考”(Réflexions sur le resolution algébrique desequations,《全集》Ⅲ, pp 205—421)中,把前人解三、四次代数方程的各种解法,总结为一套标准方法,而且还分析出一般三、四次方程能用代数方法解出的原因。三次方程有一个二次辅助方程,其解为三次方程根的函数,在根的置换下只有两个值;四次方程的辅助方程的解则在根的置换下只有三个不同值,因而辅助方程为三次方程。拉格朗日称辅助方程的解为原方程根的预解函数(是有理函数)。他继续寻找5次方程的预解函数,希望这个函数是低于5次的方程的解,但没有成功。尽管如此,拉格朗日的想法已蕴含着置换群概念,而且使预解(有理)函数值不变的置换构成子群,子群的阶是原置换群阶的因子。因而拉格朗日是群论的先驱。他的思想为后来的N.H.阿贝尔(Abel)和E.伽罗瓦(Galois)采用并发展,终于解决了高于四次的一般方程为何不能用代数方法求解的问题。
 +
 
 +
拉格朗日在1770年还提出一种超越方程的级数解法。设p为方程,这就是后来在天体力学中常用的拉格朗日级数。他自己没有讨论收敛性,后来由柯西求出此级数的收敛范围。
 +
 
 +
* 数论
 +
 
 +
拉格朗日到柏林初期就开始研究数论,第一篇论文“二阶不定问题的解”(Sur la solution des problémès in détèrminésdu seconde degrés)和送交都灵《论丛》的“一个算术问题的解”(Solution d&apos;un problème d&apos;arithmetique)中,讨论了欧拉多年从事的费马(Fermat)方程x2-Ay2=1(x,y,A为整数),(9)
 +
 
 +
不定问题解的新方法”(Nouvelle méthode pour resoudveles problèmes indéteminés en nombres entiers)中得到更一般的费马方程
 +
 
 +
(B也为整数)(10)的解。还讨论了更广泛的二元二次整系数方程 
 +
 
 +
,(11)并解决了整数解问题。
 +
 
 +
拉格朗日还在1772年的“一个算术定理的证明”(De monstration d'un théorème d'arthmétique,《文集》Ⅲ,pp.189—201)中,把欧拉40多年没有解决的费马另一猜想“一个正整数能表示为最多四个平方数的和”证明出来。在1773年发表的“质数的一个新定理的证明”(Démonstation d'un theorem nouveau concernant les nombres premiers)中,证明了著名的定理:n是质数的充要条件为(n-1)!+1能被n整除。
 +
 
 +
拉格朗日不仅有大量成果,还在方法上有创新。如在证明(9)式研究”(Recherches d'arithmétiques,《文集》Ⅲ,pp.695—795)中,研究(11)式解时采用的方法和结果,是二次型理论的基本文献。
 +
 
 +
* 函数和无穷级数
 +
 
 +
同18世纪的其他数学家一样,拉格朗日也认为函数可以展开为无穷级数,而无穷级数则是多项式的推广。他还试图用代数建立微积分的基础。在他的《解析函数论……》(《文集》Ⅸ)中,书名上加的小标题“含有微分学的主要定理,不用无穷小,或正在消失的量,或极限与流数等概念,而归结为代数分析艺术”,表明了他的观点。由于回避了极限和级数收敛性问题,当然就不可能建立真正的级数理论和函数论,但是他们的一些处理方法和结果仍然有用,他们的观点也在发展。
 +
 
 +
拉格朗日就在《解析函数论……》中,第一次得到微分中值定理(书中第六章)f(b)-f(a)=f′(c)(b-a)(a≤c≤b),(12)后面并用它推导出泰勒(Taylor)级数,还给出余项Rn的具体表达式(第二十章)Rn就是著名的拉格朗日余项形式。他还着重指出,泰勒级数不考虑余项是不能用的。虽然他还没有考虑收敛性,甚至各阶导数的存在性,但他强调Rn要趋于零。表明他已注意到收敛问题。
 +
 
 +
他同欧拉、达朗贝尔等在任意函数能否表为三角级数的长期争论,虽未解决,但为以后三角级数理论的建立打下了基础。
 +
 
 +
* 拉格朗日内插公式
 +
 
 +
最后要提一下他在《师范学校数学基础教程》中,提出了著名的拉格朗日内插公式。
 +
 
 +
直到现在计算机计算大量中点内插时仍在使用。另外在求多元函数相对极大极小及解微分方程中的拉格朗日任意乘子法,至今也在用。
 +
 
 +
* 其他
 +
 
 +
除了对数学分析在18世纪建立的主要分支有开拓性贡献外,他对严格化问题也开始注意。尽管回避了极限概念,但他仍承认可以在极限基础上建立微积分(《文集》Ⅰ,p.325)。但正是对严格化重视不够,所建立的分支到一定阶段就很难深入。这可能是他晚年研究工作少的原因。他在1781年9月21日给达朗贝尔的信中说:“在我看来,似乎(数学)矿井已挖掘很深了,除非发现新矿脉,否则势必放弃它……”(《文集》XⅢ368)这说出了他和其他同事们的心情。事实表明,19世纪在建立数学分析严格基础后,数学更迅速地发展。
 +
 
 +
* 分析力学
 +
 
 +
分析力学的创立者
 +
 
 +
他在所著《分析力学》(1788)中,吸收并发展了欧拉、达朗贝尔等人的研究成果,应用数学分析解决质点和质点系(包括刚体、流体)的力学问题。他在总结静力学的各种原理,包括他1764年建立的虚速度原理的基础上提出分析静力学的一般原理,即虚功原理,并同达朗伯原理结合而得到动力学普遍方程。对于有约束的力学系统,他采用适当的变换,引入广义坐标,得到一般的运动方程,即第一类和第二类拉格朗日方程。全书用数学分析形式写成,没有一幅图,故名《分析力学》。书中还给出多自由度系统平衡位置附近微振动的基本理论,但对振动特征方程有重根情况说得不确切,这个错误直到19世纪中叶才分别由K.维尔斯特拉斯(1858)和O.H.索莫夫(1859)作了改正。拉格朗日继欧拉之后研究过理想流体运动方程,并最先提出速度势和流函数的慨念,成为流体无旋运动理论的基础。他在《分析力学》中从动力学普遍方程导出的流体运动方程,着眼于流体质点,描述每个流体质点自始至终的运动过程。这种方法现在称为拉格朗日方法,以区别着眼于空间点的欧拉方法,但实际上这种方法欧拉也应用过。拉格朗日研究过重刚体定点转动并对刚体的惯性椭球是旋转椭球且重心在对称轴上的情况作过详细的分析。这种情况称为重刚体的拉格朗日情况。这一研究在他生前未发表,后经J.比奈整理,收在《分折力学》第二版(1818)的附录中。在此以前,泊松在1811年曾独立得到同样的结果。拉格朗日在1811年还导得弹性薄板的平衡方程。
 +
 
 +
*天体力学
 +
 
 +
天体力学的奠基者
 +
 
 +
天体力学是在牛顿发表万有引力定律(1687)时诞生的,很快成为天文学的主流。它的学科内容和基本理论是在18世纪后期建立的。主要奠基者为欧拉,A.C.克莱罗(Clairaut)、达朗贝尔、拉格朗日和拉普拉斯。最后由拉普拉斯集大成而正式建立经典天体力学。拉格朗日一生的研究工作中,约有一半同天体力学有关,但他主要是数学家,他要把力学作为数学分析的一个分支,而又把天体力学作为力学的一个分支对待。虽然如此,他在天体力学的奠基过程中,仍有重大历史性贡献。
 +
 
 +
首先在建立天体运动方程上,拉格朗日用他在分析力学中的原理和(16),(17)式,建立起各类天体的运动方程。其中特别是根据他在微分方程解法的任意常数变异法,建立了以天体椭圆轨道根数为基本变量的运动方程,仍称作拉格朗日行星运动方程,并在广泛应用,此方程对摄动理论的建立和完善起了重大作用,方程在1780年获巴黎科学院奖的论文“彗星在行星作用下的摄动理论研究”(Recherches sur la théorie des perturbations queles comètes peuvent éprouver par l'action des planètes)中给出,得到达朗贝尔和拉普拉斯的高度评价。另外在一篇有关三体问题的获奖文章中,把三体问题的运动方程组第一次降到七阶。
 +
 
 +
在天体运动方程解法中,拉格朗日的重大历史性贡献是发现三体问题运动方程的五个特解,即拉格朗日平动解。其中两个解是三体围绕质量中心作椭圆运动过程中,永远保持等边三角形。他的这个理论结果在100多年后得到证实。1907年2月22日,德国海德堡天文台发现了一颗小行星[后来命名为希腊神话中的大力士阿基里斯(Achilles),编号588],它的位置正好与太阳和木星形成等边三角形。到1970年前,已发现15颗这样的小行星,都以希腊神话中特洛伊(Troy)战争中将帅们的名字命名。有9 颗位于木星轨道上前面60°处的拉格朗日特解附近,名为希腊人(Greek)群;有6颗位于木星轨道上后面60°处的解附近,名为脱罗央(Trojan)群。1970年以后又继续发现40多颗小行星位于此两群内,其中我国紫金山天文台发现四颗,但尚未命名。至于为什么在特解附近仍有小行星,是因为这两个特解是稳定的。1961年又在月球轨道前后发现与地月组成等边三角形解处聚集的流星物质,是拉格朗日特解的又一证明。至今尚未找到肯定在三个拉格朗日共线群(三体共线情况)处附近的天体,因为这三个特解不稳定。另外,拉格朗日在一阶摄动理论中也有重要贡献,提出了计算长期摄动方法(《文集》Ⅴ,pp.125—414),并与拉普拉斯一起提出了在一阶摄动下的太阳系稳定性定理(参见《世界著名科学家传记·天文学家Ⅰ》中“拉普拉斯”条)。此外,拉格朗日级数(8)式在摄动理论中有广泛应用。
 +
 
 +
在具体天体的运动研究中,拉格朗日也有大量重要贡献,其中大部分是参加巴黎科学院征奖的课题。他的月球运动理论研究论文多次获奖。1763年完成的“月球天平动研究”(Recherches sur laLibration de la lune)获1764年度奖,此文较好地解释了月球自转和公转的角速度差异,但对月球赤道和轨道面的转动规律解释得不够好。后来在1780年完成的论文解决得更好(参见《文集》Ⅴ,pp.5—123)。获1772年度奖的就是著名的三体问题论文,也是针对月球运动研究写出的。获1774年度奖的论文为“关于月球运动的长期差”(Sur l’equation séculaire de la lune),其中第一次讨论了地球形状和所有大行星对月球的摄动。关于行星和彗星运动的论文也有两次获奖。1776年度获奖的是他在1775年完成的三篇论文[10,11,12,]其中讨论了行星轨道交点和倾角的长期变化对彗星运动的影响。1780年度的获奖论文就是提出著名的拉格朗日行星运动方程的那篇。获1766年度奖的论文是“木星的卫星运动的偏差研究……”(Recherches sur les inégualités des satellites de Jupiter…),其中第一次讨论了太阳引力对木星的四个卫星运动的影响,结果比达朗贝尔的更好。
 +
 
 +
拉格朗日从事的天体力学课题还有很多,如在柏林时期的前半部分,还研究了用三个时刻的观测资料计算彗星轨道的方法(《文集》Ⅳ,pp.439—532),所得结果成为轨道计算的基础。另外他还得到了一种力学模型——两个不动中心问题的解,这是欧拉已讨论过的,又称为欧拉问题。是拉格朗日推广到存在离心力的情况,故后来又称为拉格朗日问题(《文集》Ⅱ,pp.67—121)。这些模型仍在应用。有人用作人造卫星运动的近似力学模型。此外,他在《分析力学》中给出的流体静力学的结果,后来成为讨论天体形状理论的基础。
 +
 
 +
总的看来,拉格朗日在天体力学的五个奠基者中,所做的历史性贡献仅次于拉普拉斯。他创立的“分析力学”对以后天体力学的发展有深远的影响。
 +
== 人物著作 ==
 +
拉格朗日的著作非常多,未能全部收集。他去世后,法兰西研究院集中了他留在学院内的全部著作,编辑出版了十四卷《拉格朗日文集》,由J.A.塞雷(Serret)主编,1867年出第一卷,到1892年才印出第十四卷。第一卷收集他在都灵时期的工作,发表在《论丛》第一到第四卷中的论文;第二卷收集他发表在《论丛》第四、五卷及《都灵科学院文献》第一、二卷中的论文;第三卷中有他在《柏林科学院文献》(1768—1769年,1770—1773年)发表的论文; 第四卷刊有他在《柏林科学院新文献》(1774—1779年,1781年,1783)年发表的论文;第五卷刊载上述刊物(1780—1783年,1785—1786年,1792年,1793年,1803年)发表的论文;第六卷载有他未在巴黎科学院或法兰西研究院的刊物上发表过的文章;第七卷主要刊登他在师范学校的报告;第八卷为1808年完成的《各阶数值方程的解法论述及代数方程式的几点说明》(Traité des équations numériquesde tous les degrés, avec des notes sur plusieurs points de lathéorie des equations algébriques)一书;第九卷是1813年再版的《解析函数论,含有微分学的主要定理,不用无穷小,或正在消失的量,或极限与流数等概念,而归结为代数分析艺术》一书;第十卷是1806年出版的《函数计算教程》一书;第十一卷是1811年出版的《分析力学》第一卷,并由J.贝特朗(Bertrand)和G.达布(Darboux)作了注释;第十二卷为《分析力学》的第二卷,仍由上述二人注释,此二卷书后来在巴黎重印(1965);第十三卷刊载他同达朗贝尔的学术通讯;第十四卷是他同孔多塞,拉普拉斯,欧拉等人的学术通讯,此二卷都由L.拉朗(Lalanne)作注释。还计划出第十五卷,包含1892年以后找到的通讯,但未出版。
 +
== 人物评价 ==
 +
拉格朗日是18世纪的伟大科学家,在数学、力学和天文学三个学科中都有历史性的重大贡献。但他主要是数学家,拿破仑曾称赞他是“一座高耸在数学界的金字塔”,他最突出的贡献是在把数学分析的基础脱离几何与力学方面起了决定性的作用。使数学的独立性更为清楚,而不仅是其他学科的工具。同时在使天文学力学化、力学分析化上也起了历史性作用,促使力学和天文学(天体力学)更深入发展。由于历史的局限,严密性不够妨碍着他取得更多的成果

於 2019年1月14日 (一) 21:20 的修訂

約瑟夫·拉格朗日
原文名 Joseph Lagrange
出生 (1736-01-25)1736年1月25日
意大利都靈
逝世 1813年4月11日(1813-04-11)(77歲)
國籍 法國
職業 數學家、天文學家

基本信息

  • 中文姓名:約瑟夫·拉格朗日
  • 外文名稱:Joseph Lagrange
  • 國 籍: 法國
  • 祖 籍: 
  • 出 生 地:意大利都靈
  • 出生日期:1736年1月25日
  • 職 業:數學家、天文學家
  • 獲得榮譽:腓特烈大帝稱做「歐洲最偉大的數學家
  • 主要貢獻:拉格朗日中值定理,創立了拉格朗日力學
  • 其它作品:

約瑟夫·拉格朗日

約瑟夫·拉格朗日(Joseph-Louis Lagrange,1736~1813)全名為約瑟夫·路易斯·拉格朗日,法國著名數學家物理學家。 1736年1月25日生於意大利都靈,1813年4月10日卒於巴黎。他在數學、力學和天文學三個學科領域中都有歷史性的貢獻,其中尤以數學方面的成就最為突出。 拉格朗日曾為普魯士腓特烈大帝在柏林工作了20年,被腓特烈大帝稱做「歐洲最偉大的數學家」,後受法國國王路易十六的邀請定居巴黎直至去世。拉格朗日一生才華橫溢,在數學、物理和天文等領域做出了很多重大的貢獻,其中尤以數學方面的成就最為突出。他的成就包括著名的拉格朗日中值定理,創立了拉格朗日力學等等。1813年4月3日,拿破崙授予他帝國大十字勳章,但此時的拉格朗日已臥床不起,4月11日早晨,拉格朗日逝世。

生平經歷

拉格朗日父親是法國陸軍騎兵里的一名軍官,後由於經商破產,家道中落。據拉格朗日本人回憶,如果幼年時家境富裕,他也就不會作數學研究了,因為父親一心想把他培養成為一名律師。拉格朗日個人卻對法律毫無興趣。

18歲時,拉格朗日用[[意大利語寫了第一篇論文,是用[[牛頓二項式定理處理兩函數乘積的高階微商,他又將論文用拉丁語寫出寄給了當時在柏林科學院任職的數學家歐拉。不久後,他獲知這一成果早在半個世紀前就被萊布尼茲取得了。這個並不幸運的開端並未使拉格朗日灰心,相反,更堅定了他投身數學分析領域的信心。

拉格朗日也是分析力學的創立者。拉格朗日在其名著《分析力學》中,在總結歷史上各種力學基本原理的基礎上,發展達朗貝爾、歐拉等人研究成果,引入了勢和等勢面的概念,進一步把數學分析應用於質點和剛體力學,提出了運用於靜力學和動力學的普遍方程,引進廣義坐標的概念,建立了拉格朗日方程,把力學體系的運動方程從以力為基本概念的牛頓形式,改變為以能量為基本概念的分析力學形式,奠定了分析力學的基礎,為把力學理論推廣應用到物理學其他領域開闢了道路。 1755年拉格朗日19歲時,在探討數學難題「等周問題」的過程中,他以歐拉的思路和結果為依據,用純分析的方法求變分極值。第一篇論文「極大和極小的方法研究」,發展了歐拉所開創的變分法,為變分法奠定了理論基礎。變分法的創立,使拉格朗日在都靈聲名大震,並使他在19歲時就當上了都靈皇家炮兵學校的教授,成為當時歐洲公認的第一流數學家。1756年,受歐拉的舉薦,拉格朗日被任命為普魯士科學院通訊院士。

1764年,法國科學院懸賞徵文,要求用萬有引力解釋月球天平動問題,他的研究獲獎。接着又成功地運用微分方程理論和近似解法研究了科學院提出的一個複雜的六體問題(木星的四個衛星的運動問題),為此又一次於1766年獲獎。

1766年德國的腓特烈大帝向拉格朗日發出邀請時說,在「歐洲最大的王」的宮廷中應有「歐洲最大的數學家」。於是他應邀前往柏林,任普魯士科學院數學部主任,居住達20年之久,開始了他一生科學研究的鼎盛時期。在此期間,他完成了《分析力學》一書,這是牛頓之後的一部重要的經典力學著作。書中運用變分原理和分析的方法,建立起完整和諧的力學體系,使力學分析化了。他在序言中宣稱:力學已經成為分析的一個分支。

1783年,拉格朗日的故鄉建立了"都靈科學院",他被任命為名譽院長。1786年腓特烈大帝去世以後,他接受了法王路易十六的邀請,離開柏林,定居巴黎,直至去世。

這期間他參加了巴黎科學院成立的研究法國度量衡統一問題的委員會,並出任法國米制委員會主任。1799年,法國完成統一度量衡工作,制定了被世界公認的長度、面積、體積、質量的單位,拉格朗日為此做出了巨大的努力。

1791年,拉格朗日被選為英國皇家學會會員,又先後在巴黎高等師範學院和巴黎綜合工科學校任數學教授。1795年建立了法國最高學術機構——法蘭西研究院後,拉格朗日被選為科學院數理委員會主席。此後,他才重新進行研究工作,編寫了一批重要著作:《論任意階數值方程的解法》、《解析函數論》和《函數計算講義》,總結了那一時期的特別是他自己的一系列研究工作。

1813年4月3日,拿破崙授予他帝國大十字勳章,但此時的拉格朗日已臥床不起,4月11日早晨,拉格朗日逝世

主要成就

拉格朗日在數學、力學和天文學三個學科中都有重大歷史性貢獻,但他主要是數學家,研究力學和天文學的目的是表明數學分析的威力。全部著作、論文、學術報告記錄、學術通訊超過500篇。

拉格朗日的學術生涯主要在18世紀後半期。當對數學、物理學和天文學是自然科學主體,數學的主流是由微積分發展起來的數學分析,以歐洲大陸為中心;物理學的主流是力學;天文學的主流是天體力學,數學分析的發展使力學和天體力學深化,而力學和天體力學的課題又成為數學分析發展的動力,當時的自然科學代表人物都在此三個學科做出了歷史性重大貢獻。

  • 月球問題

拉格朗日總結了18世紀的數學成果,同時又為19世拉格朗日點[1]紀的數學研究開闢了道路,堪稱法國最傑出的數學大師。同時,他的關於月球運動(三體問題)、行星運動、軌道計算、兩個不動中心問題、流體力學等方面的成果,在使天文學力學化、力學分析化上,也起到了歷史性的作用,促進了力學和天體力學的進一步發展,成為這些領域的開創性或奠基性研究。

  • 方程解法

在柏林工作的前十年,拉格朗日把大量時間花在代數方程和超越方程的解法上,作出了有價值的貢獻,推動了代數學的發展。他提交給柏林科學院兩篇著名的論文:《關於解數值方程》和《關於方程的代數解法的研究》。把前人解三、四次代數方程的各種解法,總結為一套標準方法,即把方程化拉格朗日點[2]為低一次的方程(稱輔助方程或預解式)以求解。

  • 他置換群

試圖尋找五次方程的預解函數,希望這個函數是低於五次的方程的解,但未獲得成功。然而,他的思想已蘊含着置換群概念,對後來阿貝爾和伽羅華起到啟發性作用,最終解決了高於四次的一般方程為何不能用代數方法求解的問題。因而也可以說拉格朗日是群論的先驅。

  • 數論

在數論方面,拉格朗日也顯示出非凡的才能。他對費馬提出的許多問題作出了解答。如,一個正整數是不多於4個平方數的和的問題等等,他還證明了圓周率的無理性。拉格朗日的這些研究成果豐富了數論的內容。

  • 冪級數

在《解析函數論》以及他早在1772年的一篇論文中,在為微積分奠定理論基礎方面作了獨特的嘗試,他企圖把微分運算歸結為代數運算,從而拋棄自牛頓以來一直令人困惑的無窮小量,並想由此出發建立全部分析學。但是由於他沒有考慮到無窮級數的收斂性問題,他自以為擺脫了極限概念,其實只是迴避了極限概念,並沒有能達到他想使微積分代數化、嚴密化的目的。不過,他用冪級數表示函數的處理方法對分析學的發展產生了影響,成為實變函數論的起點。

  • 分析力學

拉格朗日也是分析力學的創立者。拉格朗日在其名著《分析力學》中,在總結歷史上各種力學基本原理的基礎上,發展達朗貝爾、歐拉等人研究成果,引入了勢和等勢面的概念,進一步把數學分析應用於質點和剛體力學,提出了運用於靜力學和動力學的普遍方程,引進廣義坐標的概念,建立了拉格朗日方程,把力學體系的運動方程從以力為基本概念的牛頓形式,改變為以能量為基本概念的分析力學形式,奠定了分析力學的基礎,為把力學理論推廣應用到物理學其他領域開闢了道路。

  • 拉格朗日方法

他還給出剛體在重力作用下,繞旋轉對稱軸上的定點轉動(拉格朗日陀螺)的歐拉動力學方程的解,對三體問題的求解方法有重要貢獻,解決了限制性三體運動的定型問題。拉格朗日對流體運動的理論也有重要貢獻,提出了描述流體運動的拉格朗日方法。

  • 行星問題

拉格朗日的研究工作中,約有一半同天體力學有關。他用自己在分析力學中的原理和公式,建立起各類天體的運動方程。在天體運動方程的解法中,拉格朗日發現了三體問題運動方程的五個特解,即拉格朗日平動解。此外,他還研究了彗星和小行星的攝動問題,提出了彗星起源假說等。

  • 數學領域榮譽

「三L」 法國18世紀後期到19世紀初數學界著名的三個人物:拉格朗日(josephlouislagrange)、拉普拉斯(pierre-simonlaplace)和勒讓德(adrien-marielegendre)三個人的姓氏的第一個字母為「L」,又生活在同一時代,所以人們稱他們為「三L」。

數學貢獻

拉格朗日科學研究所涉及的領域極其廣泛。他在數學上最突出的貢獻是使數學分析與幾何與力學脫離開來,使數學的獨立性更為清楚,從此數學不再僅僅是其他學科的工具。

拉格朗日總結了18世紀的數學成果,同時又為19世紀的數學研究開闢了道路,堪稱法國最傑出的數學大師。同時,他的關於月球運動(三體問題)、行星運動、軌道計算、兩個不動中心問題、流體力學等方面的成果,在使天文學力學化、力學分析化上,也起到了歷史性的作用,促進了力學和天體力學的進一步發展,成為這些領域的開創性或奠基性研究。

在柏林工作的前十年,拉格朗日把大量時間花在代數方程和超越方程的解法上,作出了有價值的貢獻,推動了代數學的發展。他提交給柏林科學院兩篇著名的論文:《關於解數值方程》和《關於方程的代數解法的研究》 。把前人解三、四次代數方程的各種解法,總結為一套標準方法,即把方程化為低一次的方程(稱輔助方程或預解式)以求解。

他試圖尋找五次方程的預解函數,希望這個函數是低於五次的方程的解,但未獲得成功。然而,他的思想已蘊含着置換群概念,對後來阿貝爾和伽羅華起到啟發性作用,最終解決了高於四次的一般方程為何不能用代數方法求解的問題。因而也可以說拉格朗日是群論的先驅。

在數論方面,拉格朗日也顯示出非凡的才能。他對費馬提出的許多問題作出了解答。如,一個正整數是不多於4個平方數的和的問題等等,他還證明了圓周率的無理性。這些研究成果豐富了數論的內容。

在《解析函數論》以及他早在1772年的一篇論文中,在為微積分奠定理論基礎方面作了獨特的嘗試,他企圖把微分運算歸結為代數運算,從而拋棄自牛頓以來一直令人困惑的無窮小量,並想由此出發建立全部分析學。但是由於他沒有考慮到無窮級數的收斂性問題,他自以為擺脫了極限概念,其實只是迴避了極限概念,並沒有能達到他想使微積分代數化、嚴密化的目的。不過,他用冪級數表示函數的處理方法對分析學的發展產生了影響,成為實變函數論的起點。

近百餘年來,數學領域的許多新成就都可以直接或間接地溯源於拉格朗日的工作。所以他在數學史上被認為是對分析數學的發展產生全面影響的數學家之一。被譽為「歐洲最大的數學家」。

力學貢獻

拉格朗日在數學、力學和天文學三個學科中都有重大歷史性貢獻,但他主要是數學家,研究力學和天文學的目的是表明數學分析的威力。全部著作、論文、學術報告記錄、學術通訊超過500篇。

拉格朗日的學術生涯主要在18世紀後半期。當對數學、物理學和天文學是自然科學主體。數學的主流是由微積分發展起來的數學分析,以歐洲大陸為中心;物理學的主流是力學;天文學的主流是天體力學。數學分析的發展使力學和天體力學深化,而力學和天體力學的課題又成為數學分析發展的動力。當時的自然科學代表人物都在此三個學科做出了歷史性重大貢獻。下面就拉格朗日的主要貢獻分別評述。

他還給出剛體在重力作用下,繞旋轉對稱軸上的定點轉動(拉格朗日陀螺)的歐拉動力學方程的解,對三體問題的求解方法有重要貢獻,解決了限制性三體運動的定型問題。拉格朗日對流體運動的理論也有重要貢獻,提出了描述流體運動的拉格朗日方法。

拉格朗日的研究工作中,約有一半同天體力學有關。他用自己在分析力學中的原理和公式,建立起各類天體的運動方程。在天體運動方程的解法中,拉格朗日發現了三體問題運動方程的五個特解,即拉格朗日平動解。此外,他還研究了彗星和小行星的攝動問題,提出了彗星起源假說等。

  • 數學

數學分析的開拓者

牛頓和萊布尼茲以後的歐洲數學分裂為兩派。英國仍堅持牛頓在《自然哲學中的數學原理》中的幾何方法,進展緩慢;歐洲大陸則按萊布尼茲創立的分析方法(當時包括代數方法),進展很快,當時叫分析學(analysis)。拉格朗日是僅次於歐拉的最大開拓者,在18世紀創立的主要分支中都有開拓性貢獻。

  • 變分法

這是拉格朗日最早研究的領域,以歐拉的思路和結果為依據,但從純分析方法出發,得到更完善的結果。他的第一篇論文「極大和極小的方法研究」(Recherches sur la méthode demaximis et minimies)是他研究變分法的序幕; 1760年發表的「關於確定不定積分式的極大極小的一種新方法」(Essai d'unenouvelle méthode pour déterminer les maxima et les minima desformules integrales indéfinies)是用分析方法建立變分法的代表作。發表前寫信給歐拉時,稱此文中的方法為「變分方法」(themethod of variation)。歐拉肯定了,並在他自己的論文中正式將此方法命名為「變分法」(the calculus of variation)。變分法這個分支才真正建立起來。

拉格朗日方法是對積分進行極值化,函數y=y(x)待定。他不像歐拉和前人用改變極大或極小化曲線的個別坐標的辦法,而是引進通過端點(x1,y1),(x2,y2)的新曲線y(x)+δy(x),δy(x)叫曲線y(x)的變分。J相應的增量△J按δy,δy′展開的一、二階項叫一次變分δJ和二次變分δ2J。他用分析方法證明了δJ為零的必要條件就是歐拉方程

他達繼續討論了端點變動時的情況以及兩個自變量的重積分的情況,使這個分支繼續發展。1770年以後,拉格朗日達研究了被積函數f包含高階導數的單重和多重積分時的情況,已發展成為變分法的標準內容。

  • 微分方程

早在都靈時期,拉格朗日就對變係數常微分方程研究做出重大成果。他在降階過程中提出了以後所稱的伴隨方程,並證明了非齊次線性變係數方程的伴隨方程的伴隨方程,就是原方程的齊次方程。他還把歐拉關於常係數齊次方程的結果推廣到變係數情況,證明了變係數齊次方程的通解可用一些獨立特解乘上任意常數相加而成;而且在知道方程的m個特解後,可以把方程降低m價。

在柏林時期,他對常微分方程的奇解和特解做出歷史性貢獻,在1774年完成的「關於微分方程特解的研究」(Sur les intégralesparticulieres des equations différentielles)中系統地研究了奇解和通解的關係,明確提出由通解及其對積分常數的偏導數消去常數求出奇解的方法;還指出奇解為原方程積分曲線族的包絡線。當然,他的奇解理論還不完善,現代奇解理論的形式是由G.達布(Darboux)等人完成的。

常微分方程組的研究在當時結合天體力學中的課題進行。拉格朗日在1772年完成的「論三體問題」(Essai sur le problémedes trois corps)中,找出了三體運動的常微分方程組的五個特解:三個是三體共線情況;兩個是三體保持等邊三角形;在天體力學中稱為拉格朗日平動解。他同拉普拉斯一起完善的任意常數變異法,對多體問題方程組的近似解有重大作用,促進了攝動理論的建立。

拉格朗日是一階偏微分方程理論的建立者,他在1772年完成的。「關於一階偏微分方程的積分」(Sur l'integration des équationau differences partielles du premier order)和1785年完成的「一階線性偏微分方程的一般積分方法」(Méthode génèrale pourintégrer les equations partielles du premier order lorsque cesdifferences ne sont que linèaires)中,系統地完成了一階偏微分方程的理論和解法。

他首先提出了一階非線性偏微分方程的解分類為完全解、奇解、通積分等,並給出它們之間的關係。後來又進一步證明了解線性方程Pp+Qq=R(P,Q,R為x,y,z的函數)(5)與解等價,而解(6)式又與解常微分方程組等價。(5)式至今仍稱為拉格朗日方程。有趣的是,由上面已可看出,一階非線性偏微分方程,可以化為解常微分方程組。但拉格朗日自己卻不明確,他在1785年解一個特殊的一階偏微分方程時,還說不能用這種方法,可能他忘記了自己在1772年的結果。現代也有時稱此方法為拉格朗日方法,又稱為柯西(Cauchy)的特徵方法。因拉格朗日只討論兩個自變量情況,在推廣到n個自變量時遇到困難,而後來由柯西在1819年克服。

  • 方程論

18世紀的代數學從屬於分析,方程論是其中的活躍領域。拉格朗日在柏林的前十年,大量時間花在代數方程和超越方程的解法上。

他在代數方程解法中有歷史性貢獻。在長篇論文「關於方程的代數解法的思考」(Réflexions sur le resolution algébrique desequations,《全集》Ⅲ, pp 205—421)中,把前人解三、四次代數方程的各種解法,總結為一套標準方法,而且還分析出一般三、四次方程能用代數方法解出的原因。三次方程有一個二次輔助方程,其解為三次方程根的函數,在根的置換下只有兩個值;四次方程的輔助方程的解則在根的置換下只有三個不同值,因而輔助方程為三次方程。拉格朗日稱輔助方程的解為原方程根的預解函數(是有理函數)。他繼續尋找5次方程的預解函數,希望這個函數是低於5次的方程的解,但沒有成功。儘管如此,拉格朗日的想法已蘊含着置換群概念,而且使預解(有理)函數值不變的置換構成子群,子群的階是原置換群階的因子。因而拉格朗日是群論的先驅。他的思想為後來的N.H.阿貝爾(Abel)和E.伽羅瓦(Galois)採用並發展,終於解決了高於四次的一般方程為何不能用代數方法求解的問題。

拉格朗日在1770年還提出一種超越方程的級數解法。設p為方程,這就是後來在天體力學中常用的拉格朗日級數。他自己沒有討論收斂性,後來由柯西求出此級數的收斂範圍。

  • 數論

拉格朗日到柏林初期就開始研究數論,第一篇論文「二階不定問題的解」(Sur la solution des problémès in détèrminésdu seconde degrés)和送交都靈《論叢》的「一個算術問題的解」(Solution d'un problème d'arithmetique)中,討論了歐拉多年從事的費馬(Fermat)方程x2-Ay2=1(x,y,A為整數),(9)

不定問題解的新方法」(Nouvelle méthode pour resoudveles problèmes indéteminés en nombres entiers)中得到更一般的費馬方程

(B也為整數)(10)的解。還討論了更廣泛的二元二次整係數方程

,(11)並解決了整數解問題。

拉格朗日還在1772年的「一個算術定理的證明」(De monstration d'un théorème d'arthmétique,《文集》Ⅲ,pp.189—201)中,把歐拉40多年沒有解決的費馬另一猜想「一個正整數能表示為最多四個平方數的和」證明出來。在1773年發表的「質數的一個新定理的證明」(Démonstation d'un theorem nouveau concernant les nombres premiers)中,證明了著名的定理:n是質數的充要條件為(n-1)!+1能被n整除。

拉格朗日不僅有大量成果,還在方法上有創新。如在證明(9)式研究」(Recherches d'arithmétiques,《文集》Ⅲ,pp.695—795)中,研究(11)式解時採用的方法和結果,是二次型理論的基本文獻。

  • 函數和無窮級數

同18世紀的其他數學家一樣,拉格朗日也認為函數可以展開為無窮級數,而無窮級數則是多項式的推廣。他還試圖用代數建立微積分的基礎。在他的《解析函數論……》(《文集》Ⅸ)中,書名上加的小標題「含有微分學的主要定理,不用無窮小,或正在消失的量,或極限與流數等概念,而歸結為代數分析藝術」,表明了他的觀點。由於迴避了極限和級數收斂性問題,當然就不可能建立真正的級數理論和函數論,但是他們的一些處理方法和結果仍然有用,他們的觀點也在發展。

拉格朗日就在《解析函數論……》中,第一次得到微分中值定理(書中第六章)f(b)-f(a)=f′(c)(b-a)(a≤c≤b),(12)後面並用它推導出泰勒(Taylor)級數,還給出餘項Rn的具體表達式(第二十章)Rn就是著名的拉格朗日餘項形式。他還着重指出,泰勒級數不考慮餘項是不能用的。雖然他還沒有考慮收斂性,甚至各階導數的存在性,但他強調Rn要趨於零。表明他已注意到收斂問題。

他同歐拉、達朗貝爾等在任意函數能否表為三角級數的長期爭論,雖未解決,但為以後三角級數理論的建立打下了基礎。

  • 拉格朗日內插公式

最後要提一下他在《師範學校數學基礎教程》中,提出了著名的拉格朗日內插公式。

直到現在計算機計算大量中點內插時仍在使用。另外在求多元函數相對極大極小及解微分方程中的拉格朗日任意乘子法,至今也在用。

  • 其他

除了對數學分析在18世紀建立的主要分支有開拓性貢獻外,他對嚴格化問題也開始注意。儘管迴避了極限概念,但他仍承認可以在極限基礎上建立微積分(《文集》Ⅰ,p.325)。但正是對嚴格化重視不夠,所建立的分支到一定階段就很難深入。這可能是他晚年研究工作少的原因。他在1781年9月21日給達朗貝爾的信中說:「在我看來,似乎(數學)礦井已挖掘很深了,除非發現新礦脈,否則勢必放棄它……」(《文集》XⅢ368)這說出了他和其他同事們的心情。事實表明,19世紀在建立數學分析嚴格基礎後,數學更迅速地發展。

  • 分析力學

分析力學的創立者

他在所著《分析力學》(1788)中,吸收並發展了歐拉、達朗貝爾等人的研究成果,應用數學分析解決質點和質點系(包括剛體、流體)的力學問題。他在總結靜力學的各種原理,包括他1764年建立的虛速度原理的基礎上提出分析靜力學的一般原理,即虛功原理,並同達朗伯原理結合而得到動力學普遍方程。對於有約束的力學系統,他採用適當的變換,引入廣義坐標,得到一般的運動方程,即第一類和第二類拉格朗日方程。全書用數學分析形式寫成,沒有一幅圖,故名《分析力學》。書中還給出多自由度系統平衡位置附近微振動的基本理論,但對振動特徵方程有重根情況說得不確切,這個錯誤直到19世紀中葉才分別由K.維爾斯特拉斯(1858)和O.H.索莫夫(1859)作了改正。拉格朗日繼歐拉之後研究過理想流體運動方程,並最先提出速度勢和流函數的慨念,成為流體無旋運動理論的基礎。他在《分析力學》中從動力學普遍方程導出的流體運動方程,着眼於流體質點,描述每個流體質點自始至終的運動過程。這種方法現在稱為拉格朗日方法,以區別着眼於空間點的歐拉方法,但實際上這種方法歐拉也應用過。拉格朗日研究過重剛體定點轉動並對剛體的慣性橢球是旋轉橢球且重心在對稱軸上的情況作過詳細的分析。這種情況稱為重剛體的拉格朗日情況。這一研究在他生前未發表,後經J.比奈整理,收在《分折力學》第二版(1818)的附錄中。在此以前,泊松在1811年曾獨立得到同樣的結果。拉格朗日在1811年還導得彈性薄板的平衡方程。

  • 天體力學

天體力學的奠基者

天體力學是在牛頓發表萬有引力定律(1687)時誕生的,很快成為天文學的主流。它的學科內容和基本理論是在18世紀後期建立的。主要奠基者為歐拉,A.C.克萊羅(Clairaut)、達朗貝爾、拉格朗日和拉普拉斯。最後由拉普拉斯集大成而正式建立經典天體力學。拉格朗日一生的研究工作中,約有一半同天體力學有關,但他主要是數學家,他要把力學作為數學分析的一個分支,而又把天體力學作為力學的一個分支對待。雖然如此,他在天體力學的奠基過程中,仍有重大歷史性貢獻。

首先在建立天體運動方程上,拉格朗日用他在分析力學中的原理和(16),(17)式,建立起各類天體的運動方程。其中特別是根據他在微分方程解法的任意常數變異法,建立了以天體橢圓軌道根數為基本變量的運動方程,仍稱作拉格朗日行星運動方程,並在廣泛應用,此方程對攝動理論的建立和完善起了重大作用,方程在1780年獲巴黎科學院獎的論文「彗星在行星作用下的攝動理論研究」(Recherches sur la théorie des perturbations queles comètes peuvent éprouver par l'action des planètes)中給出,得到達朗貝爾和拉普拉斯的高度評價。另外在一篇有關三體問題的獲獎文章中,把三體問題的運動方程組第一次降到七階。

在天體運動方程解法中,拉格朗日的重大歷史性貢獻是發現三體問題運動方程的五個特解,即拉格朗日平動解。其中兩個解是三體圍繞質量中心作橢圓運動過程中,永遠保持等邊三角形。他的這個理論結果在100多年後得到證實。1907年2月22日,德國海德堡天文台發現了一顆小行星[後來命名為希臘神話中的大力士阿基里斯(Achilles),編號588],它的位置正好與太陽和木星形成等邊三角形。到1970年前,已發現15顆這樣的小行星,都以希臘神話中特洛伊(Troy)戰爭中將帥們的名字命名。有9 顆位於木星軌道上前面60°處的拉格朗日特解附近,名為希臘人(Greek)群;有6顆位於木星軌道上後面60°處的解附近,名為脫羅央(Trojan)群。1970年以後又繼續發現40多顆小行星位於此兩群內,其中我國紫金山天文台發現四顆,但尚未命名。至於為什麼在特解附近仍有小行星,是因為這兩個特解是穩定的。1961年又在月球軌道前後發現與地月組成等邊三角形解處聚集的流星物質,是拉格朗日特解的又一證明。至今尚未找到肯定在三個拉格朗日共線群(三體共線情況)處附近的天體,因為這三個特解不穩定。另外,拉格朗日在一階攝動理論中也有重要貢獻,提出了計算長期攝動方法(《文集》Ⅴ,pp.125—414),並與拉普拉斯一起提出了在一階攝動下的太陽系穩定性定理(參見《世界著名科學家傳記·天文學家Ⅰ》中「拉普拉斯」條)。此外,拉格朗日級數(8)式在攝動理論中有廣泛應用。

在具體天體的運動研究中,拉格朗日也有大量重要貢獻,其中大部分是參加巴黎科學院征獎的課題。他的月球運動理論研究論文多次獲獎。1763年完成的「月球天平動研究」(Recherches sur laLibration de la lune)獲1764年度獎,此文較好地解釋了月球自轉和公轉的角速度差異,但對月球赤道和軌道面的轉動規律解釋得不夠好。後來在1780年完成的論文解決得更好(參見《文集》Ⅴ,pp.5—123)。獲1772年度獎的就是著名的三體問題論文,也是針對月球運動研究寫出的。獲1774年度獎的論文為「關於月球運動的長期差」(Sur l』equation séculaire de la lune),其中第一次討論了地球形狀和所有大行星對月球的攝動。關於行星和彗星運動的論文也有兩次獲獎。1776年度獲獎的是他在1775年完成的三篇論文[10,11,12,]其中討論了行星軌道交點和傾角的長期變化對彗星運動的影響。1780年度的獲獎論文就是提出著名的拉格朗日行星運動方程的那篇。獲1766年度獎的論文是「木星的衛星運動的偏差研究……」(Recherches sur les inégualités des satellites de Jupiter…),其中第一次討論了太陽引力對木星的四個衛星運動的影響,結果比達朗貝爾的更好。

拉格朗日從事的天體力學課題還有很多,如在柏林時期的前半部分,還研究了用三個時刻的觀測資料計算彗星軌道的方法(《文集》Ⅳ,pp.439—532),所得結果成為軌道計算的基礎。另外他還得到了一種力學模型——兩個不動中心問題的解,這是歐拉已討論過的,又稱為歐拉問題。是拉格朗日推廣到存在離心力的情況,故後來又稱為拉格朗日問題(《文集》Ⅱ,pp.67—121)。這些模型仍在應用。有人用作人造衛星運動的近似力學模型。此外,他在《分析力學》中給出的流體靜力學的結果,後來成為討論天體形狀理論的基礎。

總的看來,拉格朗日在天體力學的五個奠基者中,所做的歷史性貢獻僅次於拉普拉斯。他創立的「分析力學」對以後天體力學的發展有深遠的影響。

人物著作

拉格朗日的著作非常多,未能全部收集。他去世後,法蘭西研究院集中了他留在學院內的全部著作,編輯出版了十四卷《拉格朗日文集》,由J.A.塞雷(Serret)主編,1867年出第一卷,到1892年才印出第十四卷。第一卷收集他在都靈時期的工作,發表在《論叢》第一到第四卷中的論文;第二卷收集他發表在《論叢》第四、五卷及《都靈科學院文獻》第一、二卷中的論文;第三卷中有他在《柏林科學院文獻》(1768—1769年,1770—1773年)發表的論文; 第四卷刊有他在《柏林科學院新文獻》(1774—1779年,1781年,1783)年發表的論文;第五卷刊載上述刊物(1780—1783年,1785—1786年,1792年,1793年,1803年)發表的論文;第六卷載有他未在巴黎科學院或法蘭西研究院的刊物上發表過的文章;第七卷主要刊登他在師範學校的報告;第八卷為1808年完成的《各階數值方程的解法論述及代數方程式的幾點說明》(Traité des équations numériquesde tous les degrés, avec des notes sur plusieurs points de lathéorie des equations algébriques)一書;第九卷是1813年再版的《解析函數論,含有微分學的主要定理,不用無窮小,或正在消失的量,或極限與流數等概念,而歸結為代數分析藝術》一書;第十卷是1806年出版的《函數計算教程》一書;第十一卷是1811年出版的《分析力學》第一卷,並由J.貝特朗(Bertrand)和G.達布(Darboux)作了注釋;第十二卷為《分析力學》的第二卷,仍由上述二人注釋,此二卷書後來在巴黎重印(1965);第十三卷刊載他同達朗貝爾的學術通訊;第十四卷是他同孔多塞,拉普拉斯,歐拉等人的學術通訊,此二卷都由L.拉朗(Lalanne)作注釋。還計劃出第十五卷,包含1892年以後找到的通訊,但未出版。

人物評價

拉格朗日是18世紀的偉大科學家,在數學、力學和天文學三個學科中都有歷史性的重大貢獻。但他主要是數學家,拿破崙曾稱讚他是「一座高聳在數學界的金字塔」,他最突出的貢獻是在把數學分析的基礎脫離幾何與力學方面起了決定性的作用。使數學的獨立性更為清楚,而不僅是其他學科的工具。同時在使天文學力學化、力學分析化上也起了歷史性作用,促使力學和天文學(天體力學)更深入發展。由於歷史的局限,嚴密性不夠妨礙着他取得更多的成果。