经典力学
此条目极大或完全地依赖于某个单一的来源。 (2020年9月) |
经典力学是力学的一个分支。经典力学是以牛顿运动定律[1] 为基础,在宏观世界和低速状态下,研究物体运动的基本学科。在物理学里,经典力学是最早被接受为力学的一个基本纲领。经典力学又分为静力学(描述静止物体)、运动学(描述物体运动)和动力学(描述物体受力作用下的运动)。16世纪,伽利略·伽利莱就已采用科学实验和数学分析的方法研究力学。他为后来的科学家提供了许多豁然开朗的启示。艾萨克·牛顿则是最早使用数学语言描述力学定律的科学家。
后来,拉格朗日、哈密顿创立更为抽象的研究方法来表述经典力学。新的表述形式被称为拉格朗日力学和哈密顿力学。这些进步主要发生在18世纪和19世纪,新的表达方式大大超出了牛顿所表达经典力学的工作范围,特别是通过使用分析力学,经过一些修改即可用于现代物理学的所有领域。
在研究速度不接近光速、质量不是非常大的宏观物体时,经典力学提供了非常精确的结果。然而,当被检测的对象尺度具有大约原子直径的大小时,需要引入量子力学;描述物体速度接近光速时,需要引入狭义相对论;如果研究大质量对象,需要引入广义相对论。 目前主流的研究将相对论力学纳入经典物理学,在他们看来,相对论力学以最发达和最准确的形式来代表经典力学。 “经典”的概念可能有些令人困惑,因为这个术语通常指的是欧洲历史上古典的时代。虽然那个时期数学中的许多发现在现在都适用并且有很大用处,但从那时起出现的大部分科学,已经被目前更准确的模型所取代。这绝不会损害目前的科学,因为大多数现代物理学都直接建立在这些发展之上。在现代意义上,经典力学的出现是科学发展的决定性阶段。最重要的是,它的特点是坚持用更严格的方法来描述。这种严格的基础只能通过数学处理和依赖实验来获得,而不是推测。经典力学建立了一种以定量方式预测物体行为的方法,以及通过精心设计的测量来测试这些预测的方法。新兴的全球合作努力提供了更多的理论和实验的审查和测试。这仍然是确立知识的确定性并使其为社会服务的关键因素。历史表明,社会健康和财富紧密依赖于培养这种调查和批判的方法。
目录
理论的表述
经典力学有许多不同的理论表述方式:
以下介绍经典力学的几个基本概念。为简单起见,经典力学常使用点粒子来模拟实际物体。点粒子的尺寸大小可以被忽略。点粒子的运动可以用一些参数描述:位移、质量、和作用在其上的力。
实际而言,经典力学可以描述的物体总是具有非零的尺寸。(超小粒子的物理行为,例如电子,必须用量子力学才能正确描述)。非零尺寸的物体比虚构的点粒子有更复杂的行为,这是因为自由度的增加,例如棒球在移动的同时也可以旋转。虽然如此,点粒子的概念也可以用来研究这种物体,因为这种物体可以被视为由大量点粒子组成的复合物。如果复合物的尺寸极小于所研究问题的距离尺寸,则可以推断复合物的质心与点粒子的行为相似。因此,使用点粒子也适合于研究这类问题。
位置及其导数
在空间内,设定一坐标系。参考此坐标系,点粒子的位置,又称为位置向量,定义为从原点O指达粒子的向量\mathbf{r}\,\!;向量的端点为原点O,矢点为粒子所处地点。如果,点粒子在空间内移动,位置会随时间而改变,则\mathbf{r}\,\!是时间t\,\!(从任意的初始时刻开始的时间)的函数。在爱因斯坦的相对性理论之前(伽利略相对性原理),时间被认为在所有参考系中是绝对的。也就是说,不同的观察者在各自的参考系中所测量的时间间隔都等值。并且,经典力学假设空间为欧几里得几何空间。
位移是位置的改变。假设从旧位置\mathbf{r_1}\,\!\,\!改变到新位置\mathbf{r_2}\,\!\,\!,则位移是\Delta\mathbf{r}=\mathbf{r_2} - \mathbf{r_1}\,\!\,\!。使用向量分析的术语,假设一个粒子的位置,从旧位置移动到新位置,则位移是端点为旧位置,矢点为新位置的向量,又称为位移向量。
简介
经典力学是以牛顿运动定律为基础,以下分别列出三条牛顿运动定律:
- 第一定律:如果物体处于静止状态,或呈等速直线运动,只要没有外力作用,物体将保持静止状态,或呈等速直线运动之状态。这定律又称为惯性定律。
- 第二定律:物体的加速度,与所受的净外力成正比。加速度的方向与净外力的方向相同。即\mathbf{F}=m\mathbf{a}\,\!;其中,\mathbf{a}\,\!是加速度,\mathbf{F}\,\!是净外力,m\,\!是质量。
- 第三定律:两个物体的相互作用力总是大小相等,方向相反,同时出现或消失。强版第三定律还额外要求两支作用力的方向都处于同一直线。
经典力学推翻了绝对空间的概念:即在不同空间发生的事件是绝然不同的。例如,静挂在移动的火车车厢内的时钟,对于站在车厢外的观察者来说是呈移动状态的。但是,经典力学仍然确认时间是绝对不变的。
由伽利略和牛顿等人发展出来的力学,着重于分析位移、速度、加速度、力等等矢量间的关系,又称为矢量力学。它是工程和日常生活中最常用的表述方式,但并不是唯一的表述方式:约瑟夫·拉格朗日、威廉·哈密顿、卡尔·雅可比等发展了经典力学的新的表述形式,即所谓分析力学。分析力学所建立的框架是近代物理的基础,如量子场论、广义相对论、量子引力等。
微分几何的发展为经典力学注入了蒸蒸日盛的生命力,是研究现代经典力学的主要数学工具。在日常经验范围中,采用经典力学可以计算出精确的结果。但是,在接近光速的高速度或强大重力场的系统中,经典力学已被相对论力学取代;在小距离尺度系统中又被量子力学取代;在同时具有上述两种特性的系统中则被相对论性量子场论取代。虽然如此,经典力学仍旧是非常有用的。因为下述原因:
虽然经典力学和其他“经典”理论(如经典电磁学和热力学)大致相容,在十九世纪末,还是发现出有些只有现代物理才能解释的不一致性。特别是,经典非相对论电动力学预言光波传播于以太内的速度是常数,经典力学无法解释这预测,因而导致了狭义相对论的发展。经典力学和经典热力学的结合又导出吉布斯佯谬(熵不具有良好定义)和紫外灾变(在频率趋向于无穷大时,黑体辐射的理论结果和实验数据无法吻合)。为解决这些问题的努力造成了量子力学的发展。