打开主菜单

求真百科

统计分析软件

来自 网络 的图片

统计分析软件是一套提供其使用者数据分析、数据管理以及绘制专业图表的完整及整合性统计软件,由美国计算机资源中心(Computer Resource Center)于1985年研制。Stata操作灵活、简单,易学易用,具有数据管理软件、统计[1]分析软件、绘图软件、矩阵计算软件和程序语言的特点,又在许多方面别具一格。

目录

基本介绍

Stata是一套提供其使用者数据分析、数据管理以及绘制专业图表的完整及整合性统计软件[2]。它拥有很多功能,包含线性混合模型、均衡重复反复及多项式普罗比模式。用Stata绘制的统计图形相当精美。

简介

新版本的STATA采用最具亲和力的窗口接口,使用者自行建立程序时,软件能提供具有直接命令式的语法。Stata提供完整的使用手册,包含统计样本建立、解释、模型与语法、文献等超过一万余页的出版品。

除此之外,Stata软件可以透过网络实时更新每天的最新功能,更可以得知世界各地的使用者对于STATA公司提出的问题与解决之道。使用者也可以透过Stata Journal获得许许多多的相关讯息以及书籍介绍等。另外一个获取庞大资源的管道就是Statalist,它是一个独立的listserver,每月交替提供使用者超过1000个讯息以及50个程序。

学习资料

网络资源

Stata官方网站。Stata公司提供的Web resources,涵盖了大量相关网络资源;其FAQ则提供了各种常见问题的解答;Statalist则是一个类似于人大经济论坛的免费的讨论区。加入Statalist的方法很简单,你只需要发送邮件至Stata-maillist,邮件内容无需任何称谓,只需写上“subscribe Statalist”的字样即可。接到确认信息后,你便成为一名Statalist的成员了。当然,即使不加入,你仍然可以浏览,但不能提问。

UCLA(加州大学洛杉矶分校提供的网络教程。该网站提供的Data Management、Graphics、Regression、Logistic Regression、Multilevel Modeling、Survey Data Analysis等模块都非常出色;其Web Books、Textbook Examples模块则非常细致地呈现了几十本非常流行的统计和计量教材的Stata实例;对于LaTeX感兴趣的朋友,则可以通过Stata Tools for LaTeX模块获得诸多有用的信息;在Graph examples模块中,则列举了四十余种图形的绘制方法;最后,在Classes and Seminars模块中,你可以在线观看数十个Stata教学视频。

Stata中文讨论专区。目前,国内已有多个专门讨论Stata应用的论坛,包括人大经济论坛Stata专区,公卫人EpiMan等。这些论坛集中了国内外数十万的Stata用户,为交流和解决Stata应用过程中遇到的各种问题和经验提供了很好的平台。

相关的书籍

自从Hamilton(1990)出版Statistics with Stata后,一系列将计量理论与软件操作结合起来的书籍开始相继面世,而在此之前,人们似乎都认为软件操作是件非常简单的事情。也正因为如此,很多学生在修改完了一个学年的计量经济学课程后,仍然不知道该如何完成OLS估计。为此,我列举的书籍多附有Stata实例(*表示我的推荐程度),多数书中的范例数据都可通过Stata官方网站下载。

一份详细的书单:UCLA提供了的书单。

入门教材:Baum(2006)*、Newton and Cox(2009)、Chen et al.(2005)、Adkins and Hill(2008)*;Wooldridge(2009)*,波士顿大学的网站上提供了该书所有章节的Stata范例,是一套非常好的学习资料。

综合性教材:Cameron and Trivedi(2005)撰写的Microeconometrics:Methods and applications一书全面介绍了微观计量中的基本分析工具,其中不乏最近十年中得到广泛应用的Bootstrap、Monte Carlo模拟,以及非参数估计法。二人于2009年出版的另一力作(Cameron and Trivedi(2009)*)是这本书的姊妹篇,重点介绍了常用计量模型的Stata实现方法。

Stata手册:我一直非常佩服撰写Stata手册的那些人,他们总能以最简洁的语言说清楚纠结我很久的问题。Stata11附有16本电子手册,仅需统一放置于D:stata11utilities目录下,即可从Stata内部的帮助文件中的Also see部分直接链接到相应的PDF说明书中。作为初学者,我强烈建议你将和[D]打印出来,反复研读。stata手册内容齐全,但不便于阅读,把命令与例题割裂开来,阅读起来很不方便。

stata软件在社会科学研究中的高级应用:周文光,李尧远,梁炜著,西北工业大学出版社出版。该书详细介绍了如何应用stata对连续变量与分类变量进行分析,包括回归分析,时间序列分析,面板数据分析等,并介绍了如何使用stata进行生存分析与聚类分析、编程等内容。

Stata视频。相比于网络教程和纸本教材,通过视频学习Stata可能是最快捷的方式了。UCLA免费发布的视频教程,内容涉及Stata入门、数据处理和绘图等。采用英文讲解,思路清晰。局限在于所涉及内容不够系统,但对于想快速入门的学生则是一份不错的参考资料。同时,藉由这份资料也可以练习一下英语听力。对于中文用户而言,人大论坛发布的Stata初级和高级视频则提供了更为快捷的学习方式。其中,初级视频主要介绍stata的操作方法,包括stata入门、stata数据处理、stata绘图、stata矩阵以及stata编程初步五个部分。高级视频主要介绍各种计量模型的基本原理,重点介绍其在stata中的实现方法,包括OLS、GLS、MLE、IV-GMM、时间序列分析、面板模型、stata高级编程、Bootstrap和Monte Carlo模拟等内容,比较全面的涵盖了计量经济学和核心内容。

统计方法:Rabe-Hesketh and Everitt(2006)。

Stata绘图:Mitchell(2008),非常细致地介绍了各种图形的绘制方法。

Stata数据处理:Kohler and Kreuter(2005)*、Long(2009)*、杨菊华(2008)。

Stata编程:Baum(2009),当然,该书中有关数据处理的介绍也非常精彩。

Logit/Probit模型:Hosmer and Lemeshow(2000)*对相关的理论进行非常细致的介绍,是我学习Logit模型的入门教材;Long and Freese(2001)*、Long and Freese(2006)、Hilbe(2009)则涉及了大量的Stata实例,对解读Logit/Probit模型的结果很有帮助;Rabe-Hesketh et al.(2004)提供了在GLLAMM架构下估计xtlogit,xtprobit,xtmelogit以及xtmepoisson模型的方法。

Panel Data和多层次模型:Stata11手册[XT]*,简洁明了,附有大量实例;Cameron and Trivedi(2009)*、王志刚(2008)、Rabe-Hesketh and Skrondal(2008)。

Mata:Schmidheiny(2008)*,简洁明了介绍了Mata的基本用法;详情则可参与Stata11手册[M]。

GLLAMM:Rabe-Hesketh et al.(2004)。

Meta:Sterne(2009)。

GLM:Hardin et al.(2007)。

MLE:Harrison(2008)(Lectures)、Gould et al.(2006)。

生存分析:Cleves et al.(2008)。

产品设计

程序设计

Stata是一个统计分析软件,但它也具有很强的程序语言功能,这给用户提供了一个广阔的开发应用的天地,用户可以充分发挥自己的聪明才智,熟练应用各种技巧,真正做到随心所欲。事实上,Stata的ado文件(高级统计部分)都是用Stata自己的语言编写的。

Stata其统计分析能力远远超过了SPSS,在许多方面也超过了SAS!由于Stata在分析时是将数据全部读入内存,在计算全部完成后才和磁盘交换数据,因此计算速度极快(一般来说,SAS的运算速度要比SPSS至少快一个数量级,而Stata的某些模块和执行同样功能的SAS模块比,其速度又比SAS快将近一个数量级!)Stata也是采用命令行方式来操作,但使用上远比SAS简单。其生存数据分析、纵向数据(重复测量数据)分析等模块的功能甚至超过了SAS。用Stata绘制的统计图形相当精美,很有特色。

特色功能

统计功能

Stata的统计功能很强,除了传统的统计分析方法外,还收集了近20年发展起来的新方法,如Cox比例风险回归,指数与Weibull回归,多类结果与有序结果的logistic回归,Poisson回归,负二项回归及广义负二项回归,随机效应模型等。具体说,Stata具有如下统计分析能力:

数值变量资料的一般分析:参数估计,t检验,单因素和多因素的方差分析,协方差分析,交互效应模型,平衡和非平衡设计,嵌套设计,随机效应,多个均数的两两比较,缺项数据的处理,方差齐性检验,正态性检验,变量变换等。

分类资料的一般分析:参数估计,列联表分析(列联系数,确切概率),流行病学表格分析等。

等级资料的一般分析:秩变换,秩和检验,秩相关等

相关与回归分析:简单相关,偏相关,典型相关,以及多达数十种的回归分析方法,如多元线性回归,逐步回归,加权回归,稳键回归,二阶段回归,百分位数(中位数)回归,残差分析、强影响点分析,曲线拟合,随机效应的线性回归模型等。

其他方法:质量控制,整群抽样的设计效率,诊断试验评价,kappa等。

作图功能

Stata的作图模块,主要提供如下八种基本图形的制作:直方图(histogram),条形图(bar),百分条图(oneway),百分圆图(pie),散点图(two way),散点图矩阵(matrix),星形图(star),分位数图。这些图形的巧妙应用,可以满足绝大多数用户的统计作图要求。在有些非绘图命令中,也提供了专门绘制某种图形的功能,如在生存分析中,提供了绘制生存曲线图,回归分析中提供了残差图等。

Stata的矩阵运算功能

矩阵代数是多元统计分析的重要工具,Stata提供了多元统计分析中所需的矩阵基本运算,如矩阵的加、积、逆、Cholesky分解、Kronecker内积等;还提供了一些高级运算,如特征根、特征向量、奇异值分解等;在执行完某些统计分析命令后,还提供了一些系统矩阵,如估计系数向量、估计系数的协方差矩阵等。

参考文献

  1. 统计学,中国教育在线
  2. ACCP软件工程师的职业前景,百分网,2018-03-21