求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

C4植物檢視原始碼討論檢視歷史

事實揭露 揭密真相
前往: 導覽搜尋

來自 搜狐網 的圖片

C4植物是一個科技名詞。

中國文字是歷史上最古老的文字之一[1]。也是至今通行的世界上最古老的文字。世界上還沒有任何一種文字像漢字這樣經久不衰。 從甲骨文發展到今天的漢字,已經有數千年的歷史。文字的發展經過了甲骨文、金文、大篆、小篆、隸書[2]、草書、楷書、行書等書體演變。

名詞解釋

C4植物(C4植物)一般指碳四植物

CO2同化的最初產物不是光合碳循環中的三碳化合物3-磷酸甘油酸,而是四碳化合物蘋果酸或天門冬氨酸的植物。又稱C4植物。如玉米、甘蔗、高粱、莧菜等。而最初產物是3-磷酸甘油酸的植物則稱為碳三植物(C3植物)。

產生過程

一般植物中,二氧化碳同化時固定的第一個產物是具有3個碳原子的磷酸甘油酸,採用這種途徑的植物稱碳3植物,,如大豆、棉花、小麥和稻等。而有些植物中,二氧化碳固定的第一個產物是具有4個碳原子的雙羧酸,採用這種途徑的植物稱碳4植物,,如玉米、高粱和甘蔗等。二氧化碳首先在葉肉細胞內被固定在四碳雙羧酸中,然後被運輸到維管束鞘細胞中脫羧,放出的二氧化碳被 Rubisco催化的羧化反應再次固定,該途徑實際上是在二氧化碳同化的基礎上增加了一個四碳雙羧酸循環,這個循環像一個二氧化碳泵,使 Rubisco羧化部位的二氧化碳濃度比碳3植物的高很多,從而減少光呼吸,因而碳4植物在強光下具有比碳3植物更高的光合效率。

有些耐乾旱的植物如景天、仙人掌等的光合碳同化過程與碳4植物類似,先將二氧化碳固定並還原成四碳雙羧酸,但它們不在兩類細胞間運輸,而是將兩次二氧化碳固定的時間錯開:夜間氣孔開放,吸收的二氧化碳固定於四碳雙羧酸中;白天氣孔關閉,四碳雙羧酸脫羧釋放的二氧化碳再次固定在磷酸甘油酸中,並同化成磷酸丙糖,避免了白天強烈的水分蒸騰,更有利於植物在乾旱環境中生存。

特殊結構

許多四碳植物在解剖上有一種特殊結構,即在維管束周圍有兩種不同類型的細胞:靠近維管束的內層細胞稱為鞘細胞,圍繞着鞘細胞的外層細胞是葉肉細胞。由葉肉細胞和維管束鞘細胞整齊排列的雙環結構,形象地稱為「花環形」結構。兩種不同類型的細胞各具不同的葉綠體。圍繞着維管束鞘細胞周圍的排列整齊緻密的葉肉細胞中的葉綠體,具有發達的基粒構造,而維管束鞘細胞的葉綠體中卻只有很少的基粒,而有很多大的卵形澱粉粒。

反應過程

葉肉細胞里的磷酸烯醇式丙酮酸(PEP)經PEP羧化酶的作用,與CO2結合,形成蘋果酸或天門冬氨酸。這些四碳雙羧酸轉移到鞘細胞里,通過脫羧酶的作用釋放CO2,後者在鞘細胞葉綠體內經核酮糖二磷酸(RuBP)羧化酶作用,進入光合碳循環。這種由PEP形成四碳雙羧酸,然後又脫羧釋放CO2的代謝途徑稱為四碳途徑。其葉肉細胞中,含有獨特的酶,即磷酸烯醇式丙酮酸碳氧化酶,使得二氧化碳先被一種三碳化合物--磷酸烯醇式丙酮酸同化,形成四碳化合物草酰乙酸鹽,這也是該暗反應類型名稱的由來。這草酰乙酸鹽在轉變為蘋果酸鹽後,進入維管束鞘,就會分解釋放二氧化碳和一分子丙酮酸。二氧化碳進入卡爾文循環,後同C3進程。而丙酮酸則會被再次合成磷酸烯醇式丙酮酸,此過程消耗ATP。

在20世紀60年代,澳大利亞科學家哈奇和斯萊克發現玉米、甘蔗等熱帶綠色植物,除了和其他綠色植物一樣具有卡爾文循環外,CO2首先通過一條特別的途徑被固定。這條途徑也被稱為哈奇-斯萊克途徑。

參考文獻