讓·巴普蒂斯·約瑟夫·傅里葉檢視原始碼討論檢視歷史
讓·巴普蒂斯·約瑟夫·傅里葉(Baron Jean Baptiste Joseph Fourier,1768-1830),男爵,法國數學家、物理學家,1768年3月21日生於歐塞爾,1830年5月16日卒於巴黎。 1817年當選為科學院院士,1822年任該院終身秘書,後又任法蘭西學院終身秘書和理工科大學校務委員會主席。
目錄
主要貢獻
在研究《熱的傳播》和《熱的分析理論》時創立了一套數學理論,對19世紀的數學和物理學的發展都產生了深遠影響。
傅里葉生於法國中部歐塞爾(Auxerre)一個裁縫家庭,9歲時淪為孤兒,被當地一主教收養。1780年起就讀於地方軍校,1795年任巴黎綜合工科大學助教,1798年隨拿破崙軍隊遠征埃及,受到拿破崙器重,回國後於1801年被任命為伊澤爾省格倫諾布爾地方長官。
傅里葉早在1807年就寫成關於熱傳導的基本論文《熱的傳播》,向巴黎科學院呈交,但經拉格朗日、拉普拉斯和勒讓德審閱後被科學院拒絕,1811年又提交了經修改的論文,該文獲科學院大獎,卻未正式發表。傅里葉在論文中推導出著名的熱傳導方程 ,並在求解該方程時發現解函數可以由三角函數構成的級數形式表示,從而提出任一函數都可以展成三角函數的無窮級數。傅里葉級數(即三角級數)、傅里葉 分析等理論均由此創始。
傅里葉由於對傳熱理論的貢獻於1817年當選為巴黎科學院院士。
1822年,傅里葉終於出版了專著《熱的解析理論》(Theorieanalytique de la Chaleur ,Didot ,Paris,1822)。這部經典著作將歐拉、伯努利等人在一些特殊情形
下應用的三角級數方法發展成內容豐富的一般理論,三角級數後來就以傅里葉的名字命名。傅里葉應用三角級數求解熱傳導方程,為了處理無窮區域的熱傳導問題又導出了當前所稱的「傅里葉積分」,這一切都極大地推動了偏微分方程邊值問題的研究。然而傅里葉的工作意義遠不止此,它迫使人們對函數概念作修正、推廣,特別是引起了對不連續函數的探討;三角級數收斂性問題更刺激了集合論的誕生。因此,《熱的解析理論》影響了整個19世紀分析嚴格化的進程。傅里葉1822年成為科學院終身秘書。
由於傅里葉極度痴迷熱學,他認為熱能包治百病,於是在一個夏天,他關上了家中的門窗,穿上厚厚的衣服,坐在火爐邊,於是他被活活熱死了,1830年5月16日卒於法國巴黎。
1、讓·巴普蒂斯·約瑟夫·傅里葉主要貢獻是在研究熱的傳播時創立了一套數學理論。
2、最早使用定積分符號,改進了代數方程符號法則的證法和實根個數的判別法等。
3、傅里葉變換的基本思想首先由傅里葉提出,所以以其名字來命名以示紀念。從現代數學的眼光來看,傅里葉變換是一種特殊的積分變換。它能將滿足一定條件的某個函數表示成正弦基函數的線性組合或者積分。在不同的研究領域,傅里葉變換具有多種不同的變體形式,如連續傅里葉變換和離散傅里葉變換。
4、傅里葉變換屬於調和分析的內容。分析二字,可以解釋為深入的研究。從字面上來看,「分析」二字,實際就是條分縷析而已。它通過對函數的條分縷析來達到對複雜函數的深入理解和研究。從哲學上看,"分析主義"和"還原主義",就是要通過對事物內部適當的分析達到增進對其本質理解的目的。比如近代原子論試圖把世界上所有物質的本源分析為原子,而原子不過數百種而已,相對物質世界的無限豐富,這種分析和分類無疑為認識事物的各種性質提供了很好的手段。
5、在數學領域,也是這樣,儘管最初傅里葉分析是作為熱過程的解析分析的工具,但是其思想方法仍然具有典型的還原論和分析主義的特徵。"任意"的函數通過一定的分解,都能夠表示為正弦函數的線性組合的形式,而正弦函數在物理上是被充分研究而相對簡單的函數類,這一想法跟化學上的原子論想法何其相似!奇妙的是,現代數學發現傅里葉變換具有非常好的性質,使得它如此的好用和有用,讓人不得不感嘆造物的神奇。