求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

胡霞檢視原始碼討論檢視歷史

事實揭露 揭密真相
前往: 導覽搜尋
胡霞
北京師範大學地理科學學部

胡霞,女,北京師範大學地理科學學部教授。

人物履歷

教育經歷

2003.9-2006.7 北京師範大學 獲自然地理學博士學位

2000.9-2003.7 華中農業大學 獲土壤學碩士學位

1996.9-2000.7 華中農業大學 獲土壤學學士學位

工作經歷

2019.8至今 北京師範大學地理科學學部 教授

2011.7~2019.8 北京師範大學地理科學學部 副教授

2007.1~2011.7 北京師範大學減災與應急管理研究院 講師

2006.8~2007.1 北京師範大學資源學院                 講師

研究方向

土壤結構與功能(水、碳、微生物等);現代技術(CT、NMR、NanoSIMS等)在土壤學研究中的應用

科研項目

1. 2020.01-2023.12 國家自然科學基金面上項目「草氈層的土壤孔隙與根繫結構特徵及其對高寒草甸土壤水分空間分布的影響」(41971053),主持人

2. 2015.01-2018.12 國家自然科學基金面上項目「根系對灌叢化草地土壤大孔隙形成及水分運移的影響」(41471018),主持人

3. 2012.01-2014.12 國家自然科學基金青年基金「內蒙古沙質草地退化對土壤大孔隙流影響機理研究」(41101019),主持人

4. 2022.07-2024.12 地表過程與資源生態國家重點實驗室自由探索項目"凍融對高寒生態系統土壤結構和微生物的影響研究"(2022-TS-03),主持人

5. 2019.11-2024.12 第二次青藏高原綜合科學考察研究任務三專題六「土壤質量變化及其對生態系統的影響」子子專題「青藏高原熱喀斯特對土壤結構和土壤微生物的影響」(2019QZKK0306)

6. 2017.09-2020.07 戰略性國際科技創新合作重點專項「絲綢之路經濟帶沿線國家流沙固定及植被恢復關鍵技術研發與示範」專題「不同類型沙區水土資源的植被承載力」(2016YE0203400-04)

7. 2018.01-2022.12 國家自然科學基金重點項目「青海湖流域關鍵帶碳水過程及其生態功能變化」子課題「青海湖流域典型生態系統三維結構和土壤微生物結構特徵及其對凍融的響應」(41730854)

8. 2012.01-2016.12 國家自然科學基金重點項目「青海湖流域生態水文過程與水分收支研究」子課題「青海湖流域典型生態系統土壤孔隙結構特徵」(41130640)

學術成果

著作論文

1. Hu X*., Gao Z. 2022. Structural characteristics of the moss (bryophyte) layer and its underlying soil structure and water retention characteristics. Catena.

2. Zhao Y D., Hu X*. 2022. How do freeze-thaw cycles affect the soil pore structure in alpine meadows considering soil aggregate and soil column scales? Journal of Soil Science and Plant Nutrition.

3. Hu X*., et al. 2022. Identification of water flow through non-root soil macropores and along roots in shrub-encroached grassland. European Journal of Soil Science.DOI: 10.1111/ejss.13260

4. Zhao Y D., Hu X*. 2022. Positive feedback relationship between shrub encroachment and arbuscular mycorrhizal fungi in the Inner Mongolia grassland of northern China. Applied soil ecology. DOI: doi.org/10.1016/j.apsoil.2022.104525

5. Gao Z., Hu X*., et al. 2021. Changes in soil water retention and content during shrub encroachment in Inner Mongolia, northern China. Catena. 206, 105528

6. Yang Z G., Hu X*., et al. 2021. Soil macropore networks derived from X-ray computed tomography in response to typical thaw slumps in Qinghai-Tibetan Plateau, China. Journal of soils and sediments. DOI: doi.org/10.1007/s11368-021-02983-2

7. Zhao Y D., Hu X*., et al. 2021. Evaluation of the impact of Freeze-thaw Cycles on the Soil Pore Structure of Alpine Meadows Using X-ray Computed Tomography. Soil Science Society of America Journal. Doi: 10.1002/saj2.20256

8. Hu X*., et al. 2021. Changes in soil microbial community during shrub encroachment process in the Inner Mongolia grassland of northern China. Catena. DOI: doi.org/10.1016/j.catena.2021.10523 9. Hu X*., et al. 2021. Intensified drought enhances coupling between vegetation growth and pre-growing season precipitation in the drylands of the Silk Road Economic Belt. Journal of Geophysical Research: Biogeosciences. 126,e2020JG005914, DOI: 10.1029/2020JG005914

10. Gao Z., Hu X*., et al 2021. Freeze-thaw cycles effects on soil macropores and its implications on the formation of hummocks in alpine meadows in the Qinghai Lake Watershed, northeastern Qinghai-Tibet Plateau. Journal of soils and sediments. DOI: 10.1007/s11368-020-02765-2

11. Zhao Y D., Hu X*., et al. 2020. Analysis of Intra-Aggregate Pore Structures in Three Soil Types using X-ray Computed Tomography. Catena 193, 104622

12. Hu X*., et al. 2020. 3-D soil macropore networks derived from X-ray tomography in an alpine meadow disturbed by plateau pikas in the Qinghai Lake watershed, north-eastern Qinghai-Tibetan Plateau. Journal of soils and sediments. DOI: 10.1007/s11368-019-02560-8

13. Hu X*., et al. 2020. Linking 3-D soil macropores and root architecture to near saturated hydraulic conductivity of typical meadow soil types in the Qinghai Lake Watershed, northeastern Qinghai–Tibet Plateau. Catena 185: 104287

14. Li Z C., Hu X*., et al. 2019. Characterization of root architectures and soil macropore networks under different landscape sing X-ray CT scanning in the Qinghai Lake watershed, NE Qinghai-Tibet Plateau. Journal of Soil Science and Plant Nutrition. 19:743–757

15. Li Z C., Hu X*., et al. 2019. Quantification of Soil Macropores at Different slope Positions Under Alpine Meadow Using Computed Tomography in the Qinghai Lake Watershed, NE Qinghai–Tibet. Eurasian soil science 11:1391-1401

16. Hu X*., et al. 2019. Influence of exclosure on CT-measured soil macropores and root architecture in a shrub-encroached grassland in northern China. Soil &Tillage Research 187: 21-30

17. Hu X*., et al. 2019. Influence of Shrub Roots on Soil Macropores using X-ray Computed Tomography in a Shrub-encroached Grassland in Northern China. Journal of soils and sediments 19:1970–1980

18. Hu X*., et al. 2018. Exclosure on CT-measured soil macropore characteristics in the Inner Mongolia grassland of northern China. Journal of soils and sediments, 18: 718–726

19. Hu X*., et al. 2018. Soil Macropore Structure under Different Land Uses Characterized by X-ray Computed Tomography in the Qinghai Lake Watershed, NE Qinghai-Tibet Plateau. Pedosphere, 28(3):478–487

20. Hu X*., et al. 2016. Quantification of soil macropore under alpine vegetation using computed tomography in the Qinghai Lake Watershed, NE Qinghai-Tibet Plateau. Geoderma, 264: 244–251.

21. Hu X*., et al. 2015. Influence of shrub encroachment on CT-measured soil macropore characteristics in the Inner Mongolia grassland of northern China. Soil &Tillage Research 150, 1-9.

22. Hu X*., et al. 2012. Development of Soil Crust under Simulated Rainfall and the Influence of Polyacrylamide on Crust Formation on a Loess Soil in the Laboratory. Pedosphere 22: 1-10.

23. Lv Y L.,Liu L Y., Hu X*., et al. 2010. Characteristics and Provenance of Settled Dust during an Unusual Dust Haze Event. Atmospheric Environment, 44:3477~3484

24. Hu X*., et al. 2009. Wind transport rate estimation using meteorological wind data for the fixed and semi-fixed dune. Pedosphere, 19(1): 129~136

25. 趙雲朵, 胡霞*, 楊志廣, 潘朋宇. 2022. 熱喀斯特湖對土壤碳和微生物影響的研究進展. 水土保持通報. 42 (3): 390-396

26. 蔣利斌, 石芳忠, 胡霞*. 2022. 絲綢之路經濟帶不同類型荒漠植被生長及其對氣候變化響應. 北京師範大學學報, 58 (1): 143-151

27. 趙雲朵, 胡霞*. 2020. 基於CT研究凍融對高寒草甸土壤孔隙結構的影響. 水土保持學報, 34 (3):362~367

28. 高宙, 胡霞*. 2020. 基於CT掃描研究灌叢根系對土壤大孔隙的影響. 水土保持研究, 27 (3):315~319

29. 胡霞*, 李宗超. 2016. 基於CT掃描研究青海湖流域高寒草甸不同坡位土壤大孔隙結構特徵. 土壤, 48(1): 180~185

30. 胡霞*. 2015. 團粒結構對黃綿土濺蝕速率和結皮形成的影響研究. 中國農學通報, 31(27): 229~235

31. 胡霞*. 2015. 紅壤結皮發育特徵以及與土壤濺蝕的關係. 中國農學通報, 31(26): 139~144

32. 劉勇, 胡霞*, 等. 2017. 基於CT的青海湖流域芨芨草草地土壤大孔隙特徵分析. 土壤, 49(1): 184–188

33. 李宗超, 胡霞*, 等. 2017. 青海湖流域土壤理化性質與土壤孔隙特徵的相關性研究. 土壤, 49(2): 371–378

34. 孫貞婷, 胡霞*. 2017. 土壤理化性質與土壤濺蝕速率的相關性研究. 水土保持研究, 24(3):53-58

35. 劉勇, 胡霞*, 等. 2016. 基於醫學CT和工業CT掃描研究土壤大孔隙結構特徵的區別. 中國農學通報,32(14):106-111

36. 李宗超, 胡霞*. 2014. 小葉錦雞兒灌叢化對退化沙質草地土壤孔隙特徵的影響. 土壤學報, 52 (1): 242–248

37. 李順江, 胡霞*, 等. 2011. 開墾對退化沙質草地土壤機械組成及有機碳分布的影響. 水土保持研究, 4: 1~6

38. 胡霞, 李順江,等. 2009. 聚丙烯酰胺(PAM)對黃土濺蝕的影響. 水土保持研究, 16(5):240~244

39. 胡霞, 劉連友, 等. 2006. 不同地表狀況對土壤風蝕的影響——以內蒙古太僕寺旗為例. 水土保持研究. 13(4):116~119

40. 胡霞, 劉連友, 等. 2006. 交通對乾草原土壤物理性質影響的試驗研究. 土壤學報, 43(2): 215~219

41. 胡霞, 劉連友, 等. 2006. 農牧交錯帶不同地表土壤水分特徵研究-以內蒙古太僕寺旗為例. 水土保持研究, 13(2):105~107

42. 胡霞, 蔡強國, 等. 2005. 人工降雨條件下土壤結皮發育特徵. 土壤學報, 42(3): 504~507

43. 胡霞, 嚴平, 等. 2005. 人工降雨條件下土壤結皮的形成過程特徵以及與土壤濺蝕的關係. 水土保持學報, 19(2):13~16

44. 胡霞, 蔡強國, 等. 2004. 聚丙烯酰胺(PAM)對黃土結皮形成的影響. 水土保持學報, 18(4): 65~68

45. 胡霞, 劉連友, 等. 2005. 土壤結皮的研究進展及其評述. 乾旱區資源與環境, 19(3):145~14[1]

參考資料