求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

痕量分析檢視原始碼討論檢視歷史

事實揭露 揭密真相
前往: 導覽搜尋

來自 搜狐網 的圖片

痕量分析是中國的一個科技名詞。

目前,世界上只有兩種文字,一種是方塊文字,如漢字[1]、日文和韓文,還有歷史上曾經出現過的西夏文[2]、契丹文,喃字等;另外一種是字母文字,主要包括拉丁字母文字、阿拉伯字母文字、粟特字母文字等。

名詞解釋

痕量分析 (trace analysis),樣品中待測組分含量低於百萬分之一的分析方法

痕量一詞的含義隨着痕量分析技術的發展而有所變化。痕量分析包括測定痕量元素在試樣中的總濃度,和用探針技術測定痕量元素在試樣中或試樣表面的分布狀況。一般分成3 個基本步驟:取樣、樣品預處理和測定。由於被測元素在樣品中含量很低、分布很不均勻,特別是環境樣品,往往隨時間、空間變化波動很大,要充分注意取樣的代表性和保證一定的樣品量。為了增強對痕量成分的檢出能力和除去基本干擾,痕量組分的分離與富集常常是必不可少的,有兩種方案:一種是將主要組分從樣品中分離出來,讓痕量組分留在溶液中;另一種是將痕量組分分離出來而讓主要組分留在溶液中。為了提高分離、富集效果,通常應用掩蔽技術。樣品預處理的另一個目的是使痕量組分轉變為最適宜於最後測量的形式。常用的分離 、富集方法有揮發 、沉澱和共沉澱 、電解、液-液萃取、離子交換、色譜、萃取色譜、電泳等。在分離、富集過程中對於污染和痕量組分的損失要予以充分注意。

化學光譜法

常用於測定高純材料中痕量雜質,對分析99.999~99.9999%純度材料,效果好,測定下限可達μg至ng級。此法須先用液-液萃取、揮發、離子交換等技術分離主體,富集雜質,再對溶液干渣用高壓電火花或交流電弧光源進行光譜測定;或在分離主體後,把溶液濃縮到2~5ml,用高頻電感耦合等離子體作光源進行光譜測定。

中子活化分析法

高純半導體材料的主要分析方法之一。用同位素中子源和小型加速器產生的通量為1012厘米-2·秒-1以上的中子流輻射被測定樣品。中子與樣品中的元素髮生核反應,生成放射性同位素及γ射線。例如Si+n→Si+γ。用探測器和多道脈衝高度分析器來分析同位素的放射性、半衰期及γ射線能譜,就能鑑定出樣品中的痕量元素。中子活化分析法的主要優點是靈敏度高於其他痕量分析方法,可在ppm或ppb的範圍內測定周期表中的大部分元素;使用高分辨率的Ge(Li)半導體探測器和電子計算機可顯著提高分析速度;樣品用量少並不被污染和破壞;同時能分析多種元素。對於中子吸收截面非常小,產生的同位素是非放射性的、或放射性同位素的半衰期很長或很短的元素,不能用此法分析。

質譜法

利用射頻火花離子源雙聚焦質譜計測定高純度材料中痕量雜質,其優點是:靈敏度高,測定下限達μg至ng級,一次可分析70多個元素。如有標樣,可進行高純金屬和半導體定量分析、粉末樣品或氧化物(製成電極後需鍍導電高純銀膜)的分析;如無標樣,採用加入內標元素的方法也可進行定量分析。若粉末樣品或溶液樣品的分析與同位素稀釋法技術結合,可不需標樣進行定量分析,並可提高分析的靈敏度和準確度。

分光光度法

用被測定元素的離子同無機或有機試劑形成顯色的絡化物,元素的測定下限可達μg至ng級。在無機痕量分析中還常用化學熒光(發光)法測定某些元素,例如Ce、Tb、Ca、Al等。新合成有機熒光試劑,如吡啶-2,6-二羧酸,鈣黃綠素等,都有良好的選擇性和靈敏度,測定下限小於0.01μg。

原子吸收光譜法

有較好的靈敏度和精密度,廣泛應用於測定高純材料中的痕量元素。用火焰原子吸收光譜進行分析時,除用空氣-C2H2火焰外,還可用N2O-C2H2火焰以擴大分析元素的數目。近年來,又發展出無火焰原子吸收光譜法,把石墨爐原子儀器應用於痕量元素分析。原子吸收光譜分析由於化學組分干擾產生系統誤差,也由於光散射和分子吸收產生的背景信號干擾,短波區比長波區大;無火焰法比火焰法嚴重。為提高痕量元素測定的可靠性,採用連續光源氘燈和碘鎢燈等以及塞曼效應技術校正背景,並與階梯單色儀相結合以改進波長的調製,效果更好。此外,痕量分析中還應用原子熒光技術。

極譜法

採用電化學分析法進行痕量元素測定,除用懸汞電極溶出伏安法測定 Cu、Pb、Cd、Zn、S等元素外,近年來發展了玻璃碳電極鍍金膜溶出伏安法測定某些重金屬元素。另外用金(或金膜)電極測定As、Se、Te、Hg等元素。膜溶出伏安法可進行陽極溶出,也可進行陰極溶出,測定下限可達1~10ng,將溶出伏安法與微分脈衝極譜技術相結合,可大大提高靈敏度和選擇性。

應用領域

痕量分析主要應用於地球化學、材料科學、生物醫學、環境科學、表面科學以及罪證分析等領域。

鉛的痕量分析

鉛是一種對人體有害的蓄積性毒物。人們已經認識到,即使是低劑量的鉛,由於能在人體中蓄積,也可不同程度地導致對人體特別是兒童的神經系統、造血系統、生長發育等方面出現症狀不明顯的慢性損害。因此, 痕量鉛的危害愈來愈引起人們的關注, 其分析技術也不斷得到發展,方法日益成熟。痕量鉛的分析日益受到重視,傳統的分析技術不斷地得到改進和發展,新的分析技術亦不斷出現。火焰原子吸收光譜法(FAAS)在痕量鉛分析中繼續保持最常使用的地位;陽極溶出伏安法雖然其使用儀器簡便,但測定痕量鉛的靈敏度和選擇性卻高,已得到廣泛的重視和研究;樣品的在線分離富集和聯用技術大大提高了痕量鉛分析的選擇性和靈敏度,簡化分析過程仍是研究的主要方向和熱門課題。

砷的痕量分析

砷的測定包括砷的各種形態的測定, 早期多用光度法測定,最常見的是銀鹽法和新銀鹽法。前者以AgDDC -CH3 - 吡啶為吸收法;後者用NaBH4 將砷轉換為砷氫化物,在硝酸-聚乙烯醇-乙醇體系中顯色,根據不同砷氫化物所形成配合物吸收波長的差別測定含量。用一般光度法及聯用技術測定, 如HPLC - ICP -MS。砷形態及痕量砷的分析方法很多,但這些方法多是價態分析,真正涉及形態分析的不多, 就分析對象而言,已涉及大氣、土壤、礦石、血液等生化樣品,環境水分析最多,從測定方法看,至今沒有能同時識別各種形態的方法, ICP -M S法測定靈敏度高,但其價格昂貴,一般實驗室不具備。分析工作者今後的任務是進一步研究能實現各種砷形態的高效分離技術和研究高靈敏、高選擇性測定超痕量砷形態的分析方法。

參考文獻