求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

圖像識別檢視原始碼討論檢視歷史

事實揭露 揭密真相
前往: 導覽搜尋

來自 孔夫子舊書網 的圖片

圖像識別是全國科學技術名詞審定委員會審定、公布的科技類名詞。

關於中國文字的起源[1]主要有兩種觀點:起源於刻畫符號和「圖畫文字」起源說[2]。我們現在已知的最早的文字是安陽殷墟出土的甲骨文

名詞解釋

圖像識別,是指利用計算機對圖像進行處理、分析和理解,以識別各種不同模式的目標和對象的技術,是應用深度學習算法的一種實踐應用。現階段圖像識別技術一般分為人臉識別與商品識別,人臉識別主要運用在安全檢查、身份核驗與移動支付中;商品識別主要運用在商品流通過程中,特別是無人貨架、智能零售櫃等無人零售領域。

圖像的傳統識別流程分為四個步驟:圖像採集→圖像預處理→特徵提取→圖像識別。圖像識別軟件國外代表的有康耐視等,國內代表的有圖智能、海深科技等。另外在地理學中指將遙感圖像進行分類的技術。

識別基礎

圖像識別可能是以圖像的主要特徵為基礎的。每個圖像都有它的特徵,如字母A有個尖,P有個圈、而Y的中心有個銳角等。對圖像識別時眼動的研究表明,視線總是集中在圖像的主要特徵上,也就是集中在圖像輪廓曲度最大或輪廓方向突然改變的地方,這些地方的信息量最大。而且眼睛的掃描路線也總是依次從一個特徵轉到另一個特徵上。由此可見,在圖像識別過程中,知覺機制必須排除輸入的多餘信息,抽出關鍵的信息。同時,在大腦里必定有一個負責整合信息的機制,它能把分階段獲得的信息整理成一個完整的知覺映象。

在人類圖像識別系統中,對複雜圖像的識別往往要通過不同層次的信息加工才能實現。對於熟悉的圖形,由於掌握了它的主要特徵,就會把它當作一個單元來識別,而不再注意它的細節了。這種由孤立的單元材料組成的整體單位叫做組塊,每一個組塊是同時被感知的。在文字材料的識別中,人們不僅可以把一個漢字的筆劃或偏旁等單元組成一個組塊,而且能把經常在一起出現的字或詞組成組塊單位來加以識別。

在計算機視覺識別系統中,圖像內容通常用圖像特徵進行描述。事實上,基於計算機視覺的圖像檢索也可以分為類似文本搜索引擎的三個步驟:提取特徵、建索引build以及查詢。

相關領域

圖像識別是人工智能的一個重要領域。為了編制模擬人類圖像識別活動的計算機程序,人們提出了不同的圖像識別模型。例如模板匹配模型。這種模型認為,識別某個圖像,必須在過去的經驗中有這個圖像的記憶模式,又叫模板。當前的刺激如果能與大腦中的模板相匹配,這個圖像也就被識別了。例如有一個字母A,如果在腦中有個A模板,字母A的大小、方位、形狀都與這個A模板完全一致,字母A就被識別了。這個模型簡單明了,也容易得到實際應用。但這種模型強調圖像必須與腦中的模板完全符合才能加以識別,而事實上人不僅能識別與腦中的模板完全一致的圖像,也能識別與模板不完全一致的圖像。例如,人們不僅能識別某一個具體的字母A,也能識別印刷體的、手寫體的、方向不正、大小不同的各種字母A。同時,人能識別的圖像是大量的,如果所識別的每一個圖像在腦中都有一個相應的模板,也是不可能的。

為了解決模板匹配模型存在的問題,格式塔心理學家又提出了一個原型匹配模型。這種模型認為,在長時記憶中存儲的並不是所要識別的無數個模板,而是圖像的某些「相似性」。從圖像中抽象出來的「相似性」就可作為原型,拿它來檢驗所要識別的圖像。如果能找到一個相似的原型,這個圖像也就被識別了。這種模型從神經上和記憶探尋的過程上來看,都比模板匹配模型更適宜,而且還能說明對一些不規則的,但某些方面與原型相似的圖像的識別。但是,這種模型沒有說明人是怎樣對相似的刺激進行辨別和加工的,它也難以在計算機程序中得到實現。因此又有人提出了一個更複雜的模型,即「泛魔」識別模型。

一般工業使用中,採用工業相機拍攝圖片,然後利用軟件根據圖片灰階差做處理後識別出有用信息,圖像識別軟件國外代表的有康耐視等,國內代表的有圖智能等。

在人工智能中圖像識別技術具有智能化、便捷化以及實用性的優勢,為人們的生活與工作帶來極大的便利。

參考文獻