求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

胡霞查看源代码讨论查看历史

跳转至: 导航搜索
胡霞
北京师范大学地理科学学部

胡霞,女,北京师范大学地理科学学部教授。

人物履历

教育经历

2003.9-2006.7 北京师范大学 获自然地理学博士学位

2000.9-2003.7 华中农业大学 获土壤学硕士学位

1996.9-2000.7 华中农业大学 获土壤学学士学位

工作经历

2019.8至今 北京师范大学地理科学学部 教授

2011.7~2019.8 北京师范大学地理科学学部 副教授

2007.1~2011.7 北京师范大学减灾与应急管理研究院 讲师

2006.8~2007.1 北京师范大学资源学院                 讲师

研究方向

土壤结构与功能(水、碳、微生物等);现代技术(CT、NMR、NanoSIMS等)在土壤学研究中的应用

科研项目

1. 2020.01-2023.12 国家自然科学基金面上项目“草毡层的土壤孔隙与根系结构特征及其对高寒草甸土壤水分空间分布的影响”(41971053),主持人

2. 2015.01-2018.12 国家自然科学基金面上项目“根系对灌丛化草地土壤大孔隙形成及水分运移的影响”(41471018),主持人

3. 2012.01-2014.12 国家自然科学基金青年基金“内蒙古沙质草地退化对土壤大孔隙流影响机理研究”(41101019),主持人

4. 2022.07-2024.12 地表过程与资源生态国家重点实验室自由探索项目"冻融对高寒生态系统土壤结构和微生物的影响研究"(2022-TS-03),主持人

5. 2019.11-2024.12 第二次青藏高原综合科学考察研究任务三专题六“土壤质量变化及其对生态系统的影响”子子专题“青藏高原热喀斯特对土壤结构和土壤微生物的影响”(2019QZKK0306)

6. 2017.09-2020.07 战略性国际科技创新合作重点专项“丝绸之路经济带沿线国家流沙固定及植被恢复关键技术研发与示范”专题“不同类型沙区水土资源的植被承载力”(2016YE0203400-04)

7. 2018.01-2022.12 国家自然科学基金重点项目“青海湖流域关键带碳水过程及其生态功能变化”子课题“青海湖流域典型生态系统三维结构和土壤微生物结构特征及其对冻融的响应”(41730854)

8. 2012.01-2016.12 国家自然科学基金重点项目“青海湖流域生态水文过程与水分收支研究”子课题“青海湖流域典型生态系统土壤孔隙结构特征”(41130640)

学术成果

著作论文

1. Hu X*., Gao Z. 2022. Structural characteristics of the moss (bryophyte) layer and its underlying soil structure and water retention characteristics. Catena.

2. Zhao Y D., Hu X*. 2022. How do freeze-thaw cycles affect the soil pore structure in alpine meadows considering soil aggregate and soil column scales? Journal of Soil Science and Plant Nutrition.

3. Hu X*., et al. 2022. Identification of water flow through non-root soil macropores and along roots in shrub-encroached grassland. European Journal of Soil Science.DOI: 10.1111/ejss.13260

4. Zhao Y D., Hu X*. 2022. Positive feedback relationship between shrub encroachment and arbuscular mycorrhizal fungi in the Inner Mongolia grassland of northern China. Applied soil ecology. DOI: doi.org/10.1016/j.apsoil.2022.104525

5. Gao Z., Hu X*., et al. 2021. Changes in soil water retention and content during shrub encroachment in Inner Mongolia, northern China. Catena. 206, 105528

6. Yang Z G., Hu X*., et al. 2021. Soil macropore networks derived from X-ray computed tomography in response to typical thaw slumps in Qinghai-Tibetan Plateau, China. Journal of soils and sediments. DOI: doi.org/10.1007/s11368-021-02983-2

7. Zhao Y D., Hu X*., et al. 2021. Evaluation of the impact of Freeze-thaw Cycles on the Soil Pore Structure of Alpine Meadows Using X-ray Computed Tomography. Soil Science Society of America Journal. Doi: 10.1002/saj2.20256

8. Hu X*., et al. 2021. Changes in soil microbial community during shrub encroachment process in the Inner Mongolia grassland of northern China. Catena. DOI: doi.org/10.1016/j.catena.2021.10523 9. Hu X*., et al. 2021. Intensified drought enhances coupling between vegetation growth and pre-growing season precipitation in the drylands of the Silk Road Economic Belt. Journal of Geophysical Research: Biogeosciences. 126,e2020JG005914, DOI: 10.1029/2020JG005914

10. Gao Z., Hu X*., et al 2021. Freeze-thaw cycles effects on soil macropores and its implications on the formation of hummocks in alpine meadows in the Qinghai Lake Watershed, northeastern Qinghai-Tibet Plateau. Journal of soils and sediments. DOI: 10.1007/s11368-020-02765-2

11. Zhao Y D., Hu X*., et al. 2020. Analysis of Intra-Aggregate Pore Structures in Three Soil Types using X-ray Computed Tomography. Catena 193, 104622

12. Hu X*., et al. 2020. 3-D soil macropore networks derived from X-ray tomography in an alpine meadow disturbed by plateau pikas in the Qinghai Lake watershed, north-eastern Qinghai-Tibetan Plateau. Journal of soils and sediments. DOI: 10.1007/s11368-019-02560-8

13. Hu X*., et al. 2020. Linking 3-D soil macropores and root architecture to near saturated hydraulic conductivity of typical meadow soil types in the Qinghai Lake Watershed, northeastern Qinghai–Tibet Plateau. Catena 185: 104287

14. Li Z C., Hu X*., et al. 2019. Characterization of root architectures and soil macropore networks under different landscape sing X-ray CT scanning in the Qinghai Lake watershed, NE Qinghai-Tibet Plateau. Journal of Soil Science and Plant Nutrition. 19:743–757

15. Li Z C., Hu X*., et al. 2019. Quantification of Soil Macropores at Different slope Positions Under Alpine Meadow Using Computed Tomography in the Qinghai Lake Watershed, NE Qinghai–Tibet. Eurasian soil science 11:1391-1401

16. Hu X*., et al. 2019. Influence of exclosure on CT-measured soil macropores and root architecture in a shrub-encroached grassland in northern China. Soil &Tillage Research 187: 21-30

17. Hu X*., et al. 2019. Influence of Shrub Roots on Soil Macropores using X-ray Computed Tomography in a Shrub-encroached Grassland in Northern China. Journal of soils and sediments 19:1970–1980

18. Hu X*., et al. 2018. Exclosure on CT-measured soil macropore characteristics in the Inner Mongolia grassland of northern China. Journal of soils and sediments, 18: 718–726

19. Hu X*., et al. 2018. Soil Macropore Structure under Different Land Uses Characterized by X-ray Computed Tomography in the Qinghai Lake Watershed, NE Qinghai-Tibet Plateau. Pedosphere, 28(3):478–487

20. Hu X*., et al. 2016. Quantification of soil macropore under alpine vegetation using computed tomography in the Qinghai Lake Watershed, NE Qinghai-Tibet Plateau. Geoderma, 264: 244–251.

21. Hu X*., et al. 2015. Influence of shrub encroachment on CT-measured soil macropore characteristics in the Inner Mongolia grassland of northern China. Soil &Tillage Research 150, 1-9.

22. Hu X*., et al. 2012. Development of Soil Crust under Simulated Rainfall and the Influence of Polyacrylamide on Crust Formation on a Loess Soil in the Laboratory. Pedosphere 22: 1-10.

23. Lv Y L.,Liu L Y., Hu X*., et al. 2010. Characteristics and Provenance of Settled Dust during an Unusual Dust Haze Event. Atmospheric Environment, 44:3477~3484

24. Hu X*., et al. 2009. Wind transport rate estimation using meteorological wind data for the fixed and semi-fixed dune. Pedosphere, 19(1): 129~136

25. 赵云朵, 胡霞*, 杨志广, 潘朋宇. 2022. 热喀斯特湖对土壤碳和微生物影响的研究进展. 水土保持通报. 42 (3): 390-396

26. 蒋利斌, 石芳忠, 胡霞*. 2022. 丝绸之路经济带不同类型荒漠植被生长及其对气候变化响应. 北京师范大学学报, 58 (1): 143-151

27. 赵云朵, 胡霞*. 2020. 基于CT研究冻融对高寒草甸土壤孔隙结构的影响. 水土保持学报, 34 (3):362~367

28. 高宙, 胡霞*. 2020. 基于CT扫描研究灌丛根系对土壤大孔隙的影响. 水土保持研究, 27 (3):315~319

29. 胡霞*, 李宗超. 2016. 基于CT扫描研究青海湖流域高寒草甸不同坡位土壤大孔隙结构特征. 土壤, 48(1): 180~185

30. 胡霞*. 2015. 团粒结构对黄绵土溅蚀速率和结皮形成的影响研究. 中国农学通报, 31(27): 229~235

31. 胡霞*. 2015. 红壤结皮发育特征以及与土壤溅蚀的关系. 中国农学通报, 31(26): 139~144

32. 刘勇, 胡霞*, 等. 2017. 基于CT的青海湖流域芨芨草草地土壤大孔隙特征分析. 土壤, 49(1): 184–188

33. 李宗超, 胡霞*, 等. 2017. 青海湖流域土壤理化性质与土壤孔隙特征的相关性研究. 土壤, 49(2): 371–378

34. 孙贞婷, 胡霞*. 2017. 土壤理化性质与土壤溅蚀速率的相关性研究. 水土保持研究, 24(3):53-58

35. 刘勇, 胡霞*, 等. 2016. 基于医学CT和工业CT扫描研究土壤大孔隙结构特征的区别. 中国农学通报,32(14):106-111

36. 李宗超, 胡霞*. 2014. 小叶锦鸡儿灌丛化对退化沙质草地土壤孔隙特征的影响. 土壤学报, 52 (1): 242–248

37. 李顺江, 胡霞*, 等. 2011. 开垦对退化沙质草地土壤机械组成及有机碳分布的影响. 水土保持研究, 4: 1~6

38. 胡霞, 李顺江,等. 2009. 聚丙烯酰胺(PAM)对黄土溅蚀的影响. 水土保持研究, 16(5):240~244

39. 胡霞, 刘连友, 等. 2006. 不同地表状况对土壤风蚀的影响——以内蒙古太仆寺旗为例. 水土保持研究. 13(4):116~119

40. 胡霞, 刘连友, 等. 2006. 交通对干草原土壤物理性质影响的试验研究. 土壤学报, 43(2): 215~219

41. 胡霞, 刘连友, 等. 2006. 农牧交错带不同地表土壤水分特征研究-以内蒙古太仆寺旗为例. 水土保持研究, 13(2):105~107

42. 胡霞, 蔡强国, 等. 2005. 人工降雨条件下土壤结皮发育特征. 土壤学报, 42(3): 504~507

43. 胡霞, 严平, 等. 2005. 人工降雨条件下土壤结皮的形成过程特征以及与土壤溅蚀的关系. 水土保持学报, 19(2):13~16

44. 胡霞, 蔡强国, 等. 2004. 聚丙烯酰胺(PAM)对黄土结皮形成的影响. 水土保持学报, 18(4): 65~68

45. 胡霞, 刘连友, 等. 2005. 土壤结皮的研究进展及其评述. 干旱区资源与环境, 19(3):145~14[1]

参考资料