抛物线查看源代码讨论查看历史
抛物线是一种圆锥曲线。在一个平面内,抛物线的每一点Pi,其与一个固定点F之间的距离等于其与一条不经过此点F的固定直线L之间的距离。这固定点F叫做抛物线的“焦点”,固定直线L叫做抛物线的“准线”。
简介
在数学中,抛物线是一个平面曲线,它是镜像对称的,并且当定向大致为U形(如果不同的方向,它仍然是抛物线)[1]。它适用于几个表面上不同的数学描述中的任何一个,这些描述都可以被证明是完全相同的曲线。
抛物线的一个描述涉及一个点(焦点)和一条线(准线)。焦点并不在准线上。抛物线是该平面中与准线和焦点等距的点的轨迹。抛物线的另一个描述是作为圆锥截面,由圆锥形表面和平行于锥形母线的平面的交点形成。第三个描述是代数。
垂直于准线并通过焦点的线(即通过中间分解抛物线的线)被称为“对称轴”。与对称轴相交的抛物线上的点被称为“顶点”,并且是抛物线最锋利弯曲的点。沿着对称轴测量的顶点和焦点之间的距离是“焦距”。 “直线”是抛物线的平行线,并通过焦点。抛物线可以向上,向下,向左,向右或向另一个任意方向打开。任何抛物线都可以重新定位并重新定位,以适应任何其他抛物线 - 也就是说,所有抛物线都是几何相似的。
抛物线具有这样的性质,如果它们由反射光的材料制成,则平行于抛物线的对称轴行进并撞击其凹面的光被反射到其焦点,而不管抛物线在哪里发生反射。相反,从焦点处的点源产生的光被反射成平行(“准直”)光束,使抛物线平行于对称轴。声音和其他形式的能量也会产生相同的效果。这种反射性质是抛物线的许多实际应用的基础。
抛物线具有许多重要的应用,从抛物面天线或抛物线麦克风到汽车前照灯反射器到设计弹道导弹。它们经常用于物理,工程和许多其他领域。
术语
- 轴:抛物线是轴对称图形,它的对称轴简称轴[2]。
- 顶点:抛物线与它的轴的交点叫做抛物线的顶点。
- 弦:抛物线的弦是连接抛物线上任意两点的线段。
- 焦弦:抛物线的焦弦是经过抛物线焦点的弦。
- 正焦弦:抛物线的正焦弦是垂直于轴的焦弦。
- 直径:抛物线的直径是抛物线一组平行弦中点的轨迹。这条直径也叫这组平行弦的共轭直径。
- 主要直径:抛物线的主要直径是抛物线的轴。
抛物线即把物体抛掷出去,落在远处地面,这物体在空中经过的曲线。
性质
光学性质
在焦点上的点光源发出的光线,经抛物线反射后平行于抛物线的对称轴。典型应用如手电筒。
焦弦性质
- 过抛物线焦弦两端的切线的交点在抛物线的准线上;
- 过抛物线焦弦两端的切线互相垂直;
- 以抛物线焦弦为直径的圆与抛物线的准线相切;
- 过抛物线焦弦两端的切线的交点与抛物线的焦点的连线和焦点弦互相垂直;
- 过焦弦两端的切线的交点与焦弦中点的连线,被抛物线所平分;
- 过焦弦的一端作准线的垂线,垂足、顶点和焦弦的另一端点三点共线;
由焦弦两端分别作准线的垂线,两垂足与抛物线焦点的连线互相垂直;
视频
抛物线 相关视频
参考文献
- ↑ 抛物线的四种标准方程,初三网,2020-2-17
- ↑ 利用几何画板动态绘制抛物线,几何画板,2016-7-19