求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

量子纏結檢視原始碼討論檢視歷史

事實揭露 揭密真相
前往: 導覽搜尋
量子纏結
圖片來自科學人雜誌

量子力學裏,當幾個粒子在彼此相互作用後,由於各個粒子所擁有的特性已綜合成為整體性質,無法單獨描述各個粒子的性質,只能描述整體系統的性質,則稱這現象為量子纏結(quantum entanglement)。量子糾纏是一種純粹發生於量子系統的現象;在經典力學裏,找不到類似的現象。

假若對於兩個相互糾纏的粒子分別測量其物理性質,像位置、動量、自旋[1]偏振等,則會發現量子關聯現象。例如,假設一個零自旋粒子衰變為兩個以相反方向移動分離的粒子。沿著某特定方向,對於其中一個粒子測量自旋,假若得到結果為上旋,則另外一個粒子的自旋必定為下旋,假若得到結果為下旋,則另外一個粒子的自旋必定為上旋;更特別地是,假設沿著兩個不同方向分別測量兩個粒子的自旋,則會發現結果違反貝爾不等式;除此以外,還會出現貌似佯謬般的現象:當對其中一個粒子做測量,另外一個粒子似乎知道測量動作的發生與結果,儘管尚未發現任何傳遞信息的機制,儘管兩個粒子相隔甚遠。

阿爾伯特·愛因斯坦鮑里斯·波多爾斯基納森·羅森於1935年發表的愛因斯坦-波多爾斯基-羅森佯謬(EPR佯謬)論述到上述現象。 埃爾溫·薛丁格稍後也發表了幾篇關於量子糾纏的論文,並且給出了「量子糾纏」這一術語。愛因斯坦認為這種行為違背了定域實在論,稱之為「鬼魅般的超距作用」,他總結,量子力學的標準表述不具完備性。然而,多年來完成的多個實驗證實量子力學的反直覺預言正確無誤,還檢試出定域實在論不可能正確。 甚至當對於兩個粒子分別做測量的時間間隔,比光波傳播於兩個測量位置所需的時間間隔還短暫之時,這現象依然發生,也就是說,量子糾纏的作用速度比光速還快。最近完成的一項實驗顯示,量子糾纏的作用速度至少比光速快10,000倍。

量子糾纏是很熱門的研究領域。像光子電子一類的微觀粒子,或者像分子巴克明斯特富勒烯、甚至像小鑽石一類的介觀粒子,都可以觀察到量子糾纏現象。現今,研究焦點已轉至應用性階段,即在通訊計算機領域的用途,然而,物理學者仍舊不清楚量子糾纏的基礎機制。

歷史

1935年,在普林斯頓高等研究院,愛因斯坦、博士後羅森、研究員波多爾斯基合作完成論文《物理實在的量子力學描述能否被認為是完備的?》,並且將這篇論文發表於5月份的《物理評論》。他們並沒有更進一步研究量子糾纏的特性。

薛丁格閱讀完畢EPR論文之後,有很多心得感想,他用德文寫了一封信給愛因斯坦,在這封信裏,他最先使用了術語Verschränkung(他自己將之翻譯為「糾纏」),這是為了要形容在EPR思想實驗裏,兩個暫時耦合的粒子,不再耦合之後彼此之間仍舊維持的關聯。不久之後,薛丁格發表了一篇重要論文,對於「量子糾纏」這術語給予定義,並且研究探索相關概念。薛丁格體會到這概念的重要性,他表明,量子糾纏不只是量子力學的某個很有意思的性質,而是量子力學的特徵性質;量子糾纏在量子力學與經典思路之間做了一個完全切割。 如同愛因斯坦一樣,薛丁格對於量子糾纏的概念並不滿意,因為量子糾纏似乎違反在相對論中對於信息傳遞所設定的速度極限。後來,愛因斯坦更譏諷量子糾纏為鬼魅般的超距作用

EPR論文很顯然地引起了眾多物理學者的興趣,啟發他們探討量子力學的基礎理論。但是除了這方面以外,物理學者認為這論題與現代量子力學並沒有甚麼牽扯,在之後很長一段時間,物理學術界並沒有特別重視這論題,也沒有發現EPR論文可能有甚麼重大瑕疵。 EPR論文試圖建立定域性隱變量理論來替代量子力學理論。1964年,約翰·貝爾提出論文表明,對於EPR思想實驗,量子力學的預測明顯地不同於定域性隱變量理論。概略而言,假若測量兩個粒子分別沿著不同軸向的自旋,則量子力學得到的統計關聯性結果比定域性隱變量理論要強很多,貝爾不等式定性地給出這差別,做實驗應該可以偵測出這差別 。因此,物理學者做了很多檢試貝爾不等式的實驗。

1972年,約翰·克勞澤史達特·弗利曼(Stuart Freedman)首先完成這種檢試實驗。1982年,阿蘭·阿斯佩的博士論文是以這種檢試實驗為題目。他們得到的實驗結果符合量子力學的預測,不符合定域性隱變量理論的預測,因此證實定域性隱變量理論不成立。但是,至今為止,每一個相關實驗都存在有漏洞,這造成了實驗的正確性遭到質疑,在作總結之前,還需要完成更多精確的實驗。

這些年來,眾多的卓越研究結果促成了應用這些超強關聯來傳遞信息的可能性,從而導致了量子密碼學的成功發展,最著名的有查爾斯·貝內特(Charles Bennett)與吉勒·布拉薩(Gilles Brassard)發明的量子密碼學阿圖爾·艾克特(Artur Eckert)發明的量子密碼學

2017年6月16日,量子科學實驗衛星墨子號首先成功實現,兩個量子糾纏光子被分發到相距超過1200公里的距離後,仍可繼續保持其量子糾纏的狀態。

2018年4月25日,芬蘭阿爾托大學教授麥卡﹒習嵐帕(Mika Sillanpää)領導的實驗團隊成功地量子糾纏了兩個獨自震動的鼓膜。每個鼓膜的寬度只有15微米,約為頭髮的寬度,是由1015個金屬原子製成。通過超導微波電路,在接近絕對零度(-273°C)下,兩個鼓膜持續進行了約30分鐘的互動。這實驗演示出巨觀的量子糾纏。

基本概念

假設一個零自旋中性π介子衰變成一個電子與一個正電子。這兩個衰變產物各自朝著相反方向移動。電子移動到區域A,在那裏的觀察者「愛麗絲」會觀測電子沿著某特定軸向的自旋;正電子移動到區域B,在那裏的觀察者「鮑勃」也會觀測正電子沿著同樣軸向的自旋。在測量之前,這兩個糾纏粒子共同形成了零自旋的「糾纏態」left|\psi\right\rang,是兩個直積態(product state)的疊加。 在圓括弧內的第一項left|\uparrow\right\rang \otimes \left|\downarrow\right\rang表明,電子的自旋為上旋若且唯若正電子的自旋為下旋;第二項left|\downarrow\right\rang \otimes \left|\uparrow\right\rang表明,電子的自旋為下旋若且唯若正電子的自旋為上旋。兩種狀況疊加在一起,每一種狀況都有可能發生,不能確定到底哪種狀況會發生,因此,電子與正電子糾纏在一起,形成糾纏態。假若不做測量,則無法知道這兩個粒子中任何一個粒子的自旋,根據哥本哈根詮釋,這性質並不存在。這單態的兩個粒子相互反關聯,對於兩個粒子的自旋分別做測量,假若電子的自旋為上旋,則正電子的自旋為下旋,反之亦然;假若電子的自旋下旋,則正電子自旋為上旋,反之亦然。量子力學不能預測到底是哪一組數值,但是量子力學可以預言,獲得任何一組數值的概率為50%。

設想一個類比的經典統計學實驗,將一枚硬幣沿著圓周切成兩半,一半是正面,另一半是反面,將這兩枚半幣分別置入兩個信封,然後隨機交給愛麗絲與鮑勃。假若愛麗絲打開信封,查看她得到的是哪種硬幣,她將無法預測這結果,因為得到正面或反面的機率各為50%。鮑勃也會遇到同樣的狀況。可以確定的是,假若愛麗絲得到正面,則鮑勃會得到反面;假若愛麗絲得到反面,則鮑勃會得到正面。這兩個事件完全地反關聯。

在先前的量子糾纏實驗裏,愛麗絲與鮑勃分別測量粒子沿著同樣軸向的自旋,雖然這涉及到量子關聯,他們仍舊會得到與經典關聯實驗同樣的結果。怎樣區分量子關聯與經典關聯?假若愛麗絲與鮑勃分別測量粒子沿著不同軸向的自旋,而不是沿著同樣軸向,然後檢驗實驗數據是否遵守貝爾不等式,則他們會發覺,量子糾纏系統必定違反貝爾不等式,而經典物理系統必定遵守貝爾不等式。因此,貝爾不等式乃是一種很靈敏的偵測量子糾纏的工具。量子糾纏實驗所涉及的量子關聯現象無法用經典統計物理學概念來解釋,在經典統計物理學裏,找不到類似案例。

粒子沿著不同軸向的自旋彼此之間是不相容可觀察量,對於這些不相容可觀察量作測量必定不能同時得到明確結果,這是量子力學的一個基礎理論。在經典力學裏,這基礎理論毫無意義,理論而言,任何粒子性質都可以被測量至任意準確度。貝爾定理意味著一個事實,一個已被實驗檢試的事實,即對兩個不相容可觀察量做測量得到的結果不遵守貝爾不等式。因此,基礎而言,量子糾纏是個非經典現象。

不確定性原理的維持必須倚賴量子糾纏機制。例如,設想先前的一個零自旋中性π介子衰變案例,兩個衰變產物各自朝著相反方向移動,現在分別測量電子的位置與正電子的動量,假若量子糾纏機制不存在,則可藉著守恆定律預測兩個粒子各自的位置與動量,這違反了不確定性原理。由於量子糾纏機制,粒子的位置與動量遵守不確定性原理。

從以相對論性速度移動的兩個參考系分別測量兩個糾纏粒子的物理性質,儘管在每一個參考系,測量兩個粒子的時間順序不同,獲得的實驗數據仍舊違反貝爾不等式,仍舊能夠可靠地複製出兩個糾纏粒子的量子關聯。

參考文獻

  1. 自旋,知乎