求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

生物發光檢視原始碼討論檢視歷史

事實揭露 揭密真相
前往: 導覽搜尋
螢火蟲
圖片來自ifuun.com

生物發光現象是在生物體內,由於生命過程的變化,化學反應將化學能轉化為光能而發光的現象。生物發光在英語中名為bioluminescence,該詞為合成詞,是由希臘語中代表生命的bios與拉丁語中意為光的lumen組合而成。大部分發光與三磷酸腺苷[1] (ATP)有關,發光的化學反應不限於在細胞內外發生。對於細菌,發光相關基因的表達被名為發光操縱子(Lux operon)的一種操縱子控制。有生物發光現象的物種在整個進化過程中獨立出現過30次以上。

生物發光現象在海洋脊椎動物無脊椎動物,微生物及陸生生物上都有發現。共生生物中也有發光生物的蹤跡。

特點

生物發光是發光的一種形式,被稱做冷光源,因為僅有低於20%的光產生熱輻射。生物發光不應與熒光生物熒光)、磷光(生物磷光|Biophosphorescence)或是光的折射弄混淆。

約90%的深海生物都會產生某種形式的光。大多數生物發出屬於藍或綠光光譜,這樣更容易通過海水傳播。不過,某些巨口魚發出紅光或紅外光,而浮蠶屬的生物發出黃光。

非海洋生物的發光現象分布較窄,但發光顏色卻更加豐富。最著名的陸上發光生物是。其他的昆蟲,昆蟲幼蟲環節動物蛛類,甚至某些真菌都被報道有生物發光能力。

某些生物的發光隨晝夜推移而變化。例如夜間發光更明亮,或是僅於夜間發光等。

發光適應性

5種主要的適應性理論可以解釋發光特性的進化過程。

對抗照明式偽裝

某些種類的魷魚身上的發光菌可發出與上方照射光強相同的光使自身隱蔽,這種現象就是對抗照明。對於這些動物,感光囊用來控制對比光線以達到與周圍環境優化匹配。通常情況下魷魚身上的細菌發光組織與感光組織分離,但一種耳烏賊科四盤耳烏賊屬的夏威夷魷魚物種(Euprymna scolopes)把兩者合二為一。

交流

生物發光直接影響了細菌間的交流(見群體感應 quorum sensing)。這種作用會提升宿主的共生效應,並對菌叢聚集產生影響。

照明

雖然大部分海洋生物發出綠光或藍光,但巨口魚產生紅光。這樣可使它們看見紅色的獵物,而因為海水把紅光濾掉這些紅魚通常不被其他深海生物看見。

吸引

某些深海魚類如鮟鱇魚發出光吸引獵物。這種魚的頭部伸出懸掛的發光器可將小型魚類吸引到自身附近。有的魚卻反其道而行之。

雪茄達摩鯊發光進行偽裝,不過它腹部上的暗色小斑點在某些大型掠食性魚類如鮪魚鯖魚看來就像他們捕食的小魚。當它們接近這些「小魚」時,就成了鯊魚的食物。

甲藻對這種發光機理的應用更為奇妙。當這種浮游生物感覺到它的天敵接近時,會立刻發出螢光。這樣捕食腰鞭毛蟲天敵的動物也會被吸引過來,這樣可能就化險為夷了。

利用光吸引異性交配是生物發光的另一種機理。這在螢火蟲身上非常常見,它們在交配季節腹部規律性的閃爍以吸引異性。在海洋生物中這種現象只在一種介形亞綱類的甲殼類動物身上確切地觀察到過。科學研究表明性引誘劑適用於遠程吸引異性 ,而生物發光適用於近距離呼喚對方。

驅除

某些魷魚及小型甲殼類動物噴出發光化學混合物或發光細菌漿就像烏賊噴的墨水一樣驅趕敵人,從而逃走。所有種類的螢火蟲幼蟲都能發出警示性的光來驅走捕食者。


參考文獻

  1. 三磷酸腺苷,A+醫學百科