26,395
次編輯
變更
修正值
,创建页面,内容为“{| class="wikitable" align="right" |- | style="background: #66CCFF" align= center| '''<big>修正值</big> ''' |- |[[File:|缩略图|居中|[ 原图链接]]] |…”
{| class="wikitable" align="right"
|-
| style="background: #66CCFF" align= center| '''<big>修正值</big> '''
|-
|[[File:|缩略图|居中|[ 原图链接]]]
|-
| style="background: #66CCFF" align= center|
|-
| align= light|
|}
'''修正值'''是指“用代数方法与未修正测量结果相加,以补偿其系统误差的值”。修正值等于负的系统误差估计值。
例如:测得值为30.1℃,用计量标准测得的结果是30℃,则已知系统误差的估计值为+0.1℃。也就是修正值为-0.1℃,已修正的测得值等于未修正测得值加修正值,即已修正测得值为30.1℃+(-0.1)℃=30.0℃ 。<ref>[ ], , --</ref>
==修正值==
含有误差的测量结果,加上修正值后就可能补偿或减少误差的影响。由于系统误差不能完全获知,因此这种补偿并不完全。修正值等于负的系统误差,这就是说加上某个修正值,就像扣掉某个系统误差,其效果是一样的,只是人们考虑问题的出发点不同而已:
真值=测量结果+修正值
=测量结果-误差
在量值溯源和量值传递中,常常采用这种加修正值的直观的办法。用高一个等级的计量标准来校准或检定测量仪器,其主要内容之一就是要获得准确的修正值。例如:用频率为fs的标准振荡器作为信号源,测得某台送检的频率计的示值为f,则示值误差Δ为f-fs。所以,在今后使用这台频率计时应扣掉这个误差,即加上修正值(-Δ),可得f+(-Δ),这样就与fs一致了。换言之,系统误差可以用适当的修正值来估计并予以补偿。但应强调指出:由于系统误差不能完全获知,因此这种补偿是不完全的,也即修正值本身就含有不确定度。当测量结果以代数和方式与修正值相加之后,其系统误差之模会比修正前的要小,但不可能为零,也即修正值只能对系统误差进行有限程度的补偿。
==修正因子==
修正因子是指“为补偿系统误差而与未修正测量结果相乘的数字因子”。
含有系统误差的测量结果,乘以修正因数后就可以补偿或减少误差的影响。比方由于等臂天平的不等臂误差,不等臂天平的臂比误差,线性标尺分度时的倍数误差,以及测量电桥臂的不等称误差所带来的测量结果中的系统误差,均可以通过乘一个修正因数得以补偿。但是,由于系统误差并不能完全获知,因而这种补偿是不完全的,也即修正因数本身仍含有不确定度。
通过修正因子或修正值已进行了修正的测量结果,即使具有较大的不确定度,但可能仍然十分接近被测量的真值(即误差甚小),因此,不应把测量不确定度与已修正测量结果的误差相混淆。
==偏差是指==
偏差是指“一个值减去其参考值”。
以测量仪器的偏差为例,它是从零件加工的“尺寸偏差”的概念引伸过来的。尺寸偏差是加工所得的某一实际尺寸,与其要求的参考尺寸或标称尺寸之差。相对于实际尺寸来说,由于加工过程中诸多因素的影响,它偏离了要求的或应有的参考尺寸,于是产生了尺寸偏差,即
尺寸偏差=实际尺寸-应有参考尺寸
对于量具也有类似情况。例如:用户需要一个准确值为1kg的砝码,并将此应有的值标示在砝码上;工厂加工时由于诸多因素的影响,所得的实际值为1.002kg,此时的偏差为+0.002kg。显然,如果按照标称值1kg来使用,砝码就有-0.002kg的示值误差;而如果在标称值上加一个修正值+0.002kg后再用,则这块砝码就显得没有误差了。这里的示值误差和修正值,都是相对于标称值而言的。从另一个角度来看,这块砝码之所以具有-0.002kg的示值误差,是因为加工发生偏差,偏大了0.002kg,从而使加工出来的实际值(1.002kg)偏离了标称值(1kg)。为了描述这个差异,引入“偏差”这个概念就是很自然的事,即
偏差=实际值-标称值
=1.002kg-1.000kg=0.002kg
==极限偏差==
在此可见,定义中的偏差与修正值相等,或与误差等值而反向。应强调指出的是:偏差相对于实际值而言,修正值与误差则相对于标称值而言,它们所指的对象不同。所以在分析时,首先要分清所研究的对象是什么。还要提及的是:上述尺寸偏差也称实际偏差或简称偏差,而常见的概念还有“上偏差”(最大极限尺寸与应有参考尺寸之差)及“下偏差”(最小极限尺寸与应有参考尺寸之差),它们统称为“极限偏差”。由代表上、下偏差的两条直线所确定的区域,即限制尺寸变动量的区域,通称为尺寸公差带。
== 参考来源 ==
{{reflist}}
[[Category: ]]
|-
| style="background: #66CCFF" align= center| '''<big>修正值</big> '''
|-
|[[File:|缩略图|居中|[ 原图链接]]]
|-
| style="background: #66CCFF" align= center|
|-
| align= light|
|}
'''修正值'''是指“用代数方法与未修正测量结果相加,以补偿其系统误差的值”。修正值等于负的系统误差估计值。
例如:测得值为30.1℃,用计量标准测得的结果是30℃,则已知系统误差的估计值为+0.1℃。也就是修正值为-0.1℃,已修正的测得值等于未修正测得值加修正值,即已修正测得值为30.1℃+(-0.1)℃=30.0℃ 。<ref>[ ], , --</ref>
==修正值==
含有误差的测量结果,加上修正值后就可能补偿或减少误差的影响。由于系统误差不能完全获知,因此这种补偿并不完全。修正值等于负的系统误差,这就是说加上某个修正值,就像扣掉某个系统误差,其效果是一样的,只是人们考虑问题的出发点不同而已:
真值=测量结果+修正值
=测量结果-误差
在量值溯源和量值传递中,常常采用这种加修正值的直观的办法。用高一个等级的计量标准来校准或检定测量仪器,其主要内容之一就是要获得准确的修正值。例如:用频率为fs的标准振荡器作为信号源,测得某台送检的频率计的示值为f,则示值误差Δ为f-fs。所以,在今后使用这台频率计时应扣掉这个误差,即加上修正值(-Δ),可得f+(-Δ),这样就与fs一致了。换言之,系统误差可以用适当的修正值来估计并予以补偿。但应强调指出:由于系统误差不能完全获知,因此这种补偿是不完全的,也即修正值本身就含有不确定度。当测量结果以代数和方式与修正值相加之后,其系统误差之模会比修正前的要小,但不可能为零,也即修正值只能对系统误差进行有限程度的补偿。
==修正因子==
修正因子是指“为补偿系统误差而与未修正测量结果相乘的数字因子”。
含有系统误差的测量结果,乘以修正因数后就可以补偿或减少误差的影响。比方由于等臂天平的不等臂误差,不等臂天平的臂比误差,线性标尺分度时的倍数误差,以及测量电桥臂的不等称误差所带来的测量结果中的系统误差,均可以通过乘一个修正因数得以补偿。但是,由于系统误差并不能完全获知,因而这种补偿是不完全的,也即修正因数本身仍含有不确定度。
通过修正因子或修正值已进行了修正的测量结果,即使具有较大的不确定度,但可能仍然十分接近被测量的真值(即误差甚小),因此,不应把测量不确定度与已修正测量结果的误差相混淆。
==偏差是指==
偏差是指“一个值减去其参考值”。
以测量仪器的偏差为例,它是从零件加工的“尺寸偏差”的概念引伸过来的。尺寸偏差是加工所得的某一实际尺寸,与其要求的参考尺寸或标称尺寸之差。相对于实际尺寸来说,由于加工过程中诸多因素的影响,它偏离了要求的或应有的参考尺寸,于是产生了尺寸偏差,即
尺寸偏差=实际尺寸-应有参考尺寸
对于量具也有类似情况。例如:用户需要一个准确值为1kg的砝码,并将此应有的值标示在砝码上;工厂加工时由于诸多因素的影响,所得的实际值为1.002kg,此时的偏差为+0.002kg。显然,如果按照标称值1kg来使用,砝码就有-0.002kg的示值误差;而如果在标称值上加一个修正值+0.002kg后再用,则这块砝码就显得没有误差了。这里的示值误差和修正值,都是相对于标称值而言的。从另一个角度来看,这块砝码之所以具有-0.002kg的示值误差,是因为加工发生偏差,偏大了0.002kg,从而使加工出来的实际值(1.002kg)偏离了标称值(1kg)。为了描述这个差异,引入“偏差”这个概念就是很自然的事,即
偏差=实际值-标称值
=1.002kg-1.000kg=0.002kg
==极限偏差==
在此可见,定义中的偏差与修正值相等,或与误差等值而反向。应强调指出的是:偏差相对于实际值而言,修正值与误差则相对于标称值而言,它们所指的对象不同。所以在分析时,首先要分清所研究的对象是什么。还要提及的是:上述尺寸偏差也称实际偏差或简称偏差,而常见的概念还有“上偏差”(最大极限尺寸与应有参考尺寸之差)及“下偏差”(最小极限尺寸与应有参考尺寸之差),它们统称为“极限偏差”。由代表上、下偏差的两条直线所确定的区域,即限制尺寸变动量的区域,通称为尺寸公差带。
== 参考来源 ==
{{reflist}}
[[Category: ]]