28,814
次編輯
變更
周焕松
,無編輯摘要
| 图像 =
[[File:周焕松.jpg|缩略图
|center|[https://p1baike.ssl.qhmsgso.com/t01dd1c8cd0a241726f.jpg gallery/list?ghid=first&pic_idx=1&eid=8615030&sid=8935997 原图链接] [https://baike.so.com/doc/8615030-8935997.html 来自360图片 ]]] | 出 图像说明 = 武汉理工大学首席教授、博士 生 日期 =导师
| 逝世日期 =
| 国籍 = 中国
| 母校 = 华中科技大学 | 职业 = 研究员 ,《数学物理学报》常务编委。
}}
'''周焕松''', 男,[[博士]],[[武汉理工大学]]首席[[教授]]、[[博士生导师]]<ref>[http://ssci.whut.edu.cn/yjsjy/dsjj/201902/t20190214_353025.shtml 周焕松个人简介 ],武汉理工大学, 2019-02-14</ref>。[[ 研究员 ]] ,1986年[[华中科技大学]]应用数学系毕业,1992年于[[中国科学院]]武汉数学物理研究所获理学 [[ 硕士 ]] 学位。1997年获瑞士联邦理工大学(EPFL)理学博士学位。在[[ 非线性椭圆型方程]] 及其相关的物理问题的研究方面获得了系列新结果,并在国际期刊物 上得到发表。其研究结果被30多个国家和地区的200余位作者发表在60余种SCI刊物上的论文他引300余次。作为主要成员先后获得过中科院自然科学二等奖以及 [[ 湖北省 ]] 自然科学奖二等奖等多项省部级奖项。主持过多项[[ 国家自然科学基金]] 项目。现任湖北省暨武汉数学学会副理事长 <ref>[https://www.gerenjianli.com/mingren/39/9l0t2g3629.html 周焕松 ],名人简历网</ref> ,[[ 《数学物理学报》]] 常务编委。
== 个人简介 ==
== 研究领域 ==
非线性椭圆型偏微分方程[1]
== 重要消息 ==
20多名中学生通过半年努力完成了一份n=200的[[ 同心幻]] 方表,并找出了其中的规律,总结出《偶阶[[ 同心幻]] 方最新的简明构造方法》 。[2] 他们的成果得到中科院有关专家的肯定,中科院武汉物理与数学研究所的[[ 王征平]] 博士后和周焕松研究员认为"和已有的文献相比,他们给出的方法更加简明有效。"[2]
一场"[[ 快乐教学法]]"活动在社区搞起促销,居民纷纷掏腰包,事后发现买的产品有质量问题,想退又找不着卖家。[[ 花园山]] 社区一些居民有点郁闷 。[3] [[ 中国科学院]] 博导周焕松表示,这些方法只是某些计算中的特例,原本就是"小学奥数"中的方法。学数学侧重的是逻辑分析,培养的是一个人的思维能力,并不是单纯的计算能力。家长不应盲从。[3]
"武汉偏微分方程研讨会"2012年第六次会议在武汉物理与数学研究所波谱楼四楼会议室召开,来自武汉大学、华中师范大学、武汉物理与数学研究所、[[ 华中科技大学、中南民族大学]] 等单位的偏微分方程领域的专家教授及研究生共60多名代表参加了此次研讨会。[5] 研讨会由武汉物数所周焕松研究员主持,参会人员积极提问交流,充分探讨当前偏微分方程领域的热点前沿问题。这次作报告的几位学者既有杰青教授,也有青年研究者,不仅让大家领略到了专家的学术风采,也给年轻学者提供了很好的展示和交流平台,使大家获益良多,研讨会取得了圆满的成功。[5]
为进一步凝练学科目标、强化传统优势、开拓前沿交叉特色课题,有效提高数学学科的核心竞争力,武汉物理与数学研究所数学物理研究室[6] 召开了学科发展研讨会。所长[[ 刘买利]] 、所长助理[[ 王振]] 等应邀参加了研讨会。数学物理研究室主任周焕松研究员主持会议。[6]
== 代表论著 ==
Zhengping Wang and Huan-Song Zhou,Ground state for semilinear Schrodinger equation with sign-changing and vanishing potential,J.Math. Phys. 52(2011), 113704[7]
Y.S.Jiang, Huan-Song Zhou, Schrodinger-Poisson system with steep potential well, J. Differential Equations, 251 (2011), 582-608.[7]
C.A.Stuart & Huan-Song Zhou, Existence of guided cylindrical TM-modes in an inhomogeneous self-focusing dielectric, Mathematical Models & Methods in Applied Sciences, 20(2010)9, 1681-1719.[7]
Yongsheng Jiang & Huan-Song Zhou, A sharp decay estimate for nonlinear Schrodinger equations with vanishing potentials, Comm. Pure & Applied Analysis, 9(2010)6, 1723-1730.[7]
Zhengping Wang, Huan-Song Zhou,Positive solution for nonlinear Schrödinger equation with deepening potential well, J. European Math. Soc.,11(2009), 545-573.[7]
Zhengping Wang, Huan-Song Zhou,Positive solutions for a nonhomogeneous elliptic equation on RN without (AR) condition, J. Math. Analysis & Applications,353(2009), 470-479.[7]
Chuangye Liu, Zhengping Wang, Huan-Song Zhou, Asymptotically linear Schrödinger equation with potential vanishing at infinity, J. Differential Equations, 245 (2008) 201–222.[7]
Huan-Song Zhou and Hongbo Zhu, Asymptotically linear elliptic problem on RN, The Quarterly Journal of Mathematics,59(2008), 523 – 541.[7]
Zhengping Wang, Huan-Song Zhou, Uniqueness and radial symmetry of least energy solution for a semilinear Neumann problem, Acta Mathematicae Applicatae Sinica, English Series,24(2008), 473-482.[7]
Wang, Zhengping; Zhou, Huan-Song Positive solution for a nonlinear stationary Schrödinger-Poisson system in R3.Discrete Contin. Dyn. Syst. 18 (2007), 809--816[7]
C.A. Stuart and H.S. Zhou, Global branch of solutions for nonlinear Schrodinger equations with deepening potential well, Proc. London Math. Soc., 92 (2006), 655-681[7]
Axi-symmetric TE-modes in a self-focusing dielectric, SIAM Journal Math Anal., Vol.37, No.1, 218-237, 2006. (with C.A.Stuart)[7]
Positive eigenfunctions of a Schrodingeroperator,Journal of the London Mathematical Society, 72(2005)(2), 429–441(withC.A.Stuart)[7]
Positive solution for - △pu = f(x, u) with f(x, u) growing as up-1 at infinity, Applied Mathematics Letters 17 (2004) 881-887. (with Yisheng Huang)[7]
A Dirichlet problem with asymptotically linear and changing sign nonlinearity, Resvita Matematica Complutense, 16(2003), page: 465-481. (with M.Lucia, P. Magrone)[7]
A constrained minimizing problem and its application to guided TM-modes, Calculus Variations and PDE., 16 (2003) , 335-373. (with C.A. Stuart)[7]
Dirichlet problem of p-Laplacian with nonlinear term f(x,u)∽up-1 at infinity, Morse Theory, Minimax Theory and their Applications to Nonlinear PDE, Editors : H.Brezis, S. Li , J. Liu & P.H. Rabinowitz, International Press 2003, 77-89. (with G.B. Li)[7]
Solutions to semilinear elliptic problems with combined nonlinearities, J. Differential Equations, 185(2002), 200-224. (with S.J. Li and S.P. Wu)[7]
Mutiple solutions to p-Laplacian problem with asymptotic nonlinearity as up-1 at infinity, Journalof The London Math. Soc., (2002)65, 123-138.(with G.B. Li)[7]
An application of a Mountain Pass Theorem, Acta Math. Sinica, 18(2002), 27-36.[7]
A Neumann problem in exterior domain, Manuscripta Math. 106 (2001) 1, 63-74. (with D.M. Cao, M. Lucia)
Existence of guided cylindrical TM-modes in a homogeneous self-focusing dielectric, Annales de l'Institut Henri Poincare Analyse Non Lineaire, 18(2001), 69-96. (with C.A. Stuart)[7]
The existence of a positive solution to asymptotically linear scalar field equations, Proc. Royal Soc. Edinburgh, Ser. A., 130A(2000), 81-105. (with G.B Li)[7]
Solutions for a quasilinear elliptic equation with critical Sobolev exponent and perturbations on RN, Differential and Integral Equations, 13(2000), 595-612.[7]
Applying the Mountain Pass Theorem to Asymptotically Linear Elliptic Equations on RN, Comm. in P.D.E., 24(1999), 1731-1758. (with C.A. Stuart)[7]
Positive solution to p-Laplacian type scalar field equation in RN with nonlinearity asymptotic to up-1 at infinity,Proc. Second International Conference on Nonli. Anal., 1999, Nankai, Eds K.C.Chang & Y.M.Long. (with G.B. Li and L.N. Wu)[7]
Positive solution for a semilinear elliptic equation which is almost linear at infinity, ZAMP, 49 (1998), 896-906. [7]
Multiple positive solutions of nonhomogeneous semilinear elliptic equation in RN, Proc. Royal Soc. Edinburgh, Section A, 126A(1996), 443-463. (with D.M. Cao) [7]
On the existence and LP(RN) bifurcation for semilinear elliptic equation, J. Math. Anal. Applica., 154(1991), 116-133. (with Y.B. Deng & X.P. Zhu)[7]
Existence of multiple positive solutions of inhomogeneous semilinear elliptic problems in unbounded domains, Proc. Royal Soc. Edinburgh, Sec. A, 115A(1990), 301-318. (with X.P. Zhu)[7]
Bifurcation from the essential spectrum of superlinear elliptic equations, Applicable Analysis, 28(1988), 51-66. (with Zhu Xi-Ping)[7]
== 参考 资料:来源==1. 人才库-中国科学院武汉物理与数学研究所 . .中国科学院武汉 [[Category:教授]][[Category: 物理 与数学研究所 . 2014-01-072. 中学生破解数 学 难题 成果得到中科院专 家 肯定 . .中国新闻网 . 2015-05-113. 一帮人借居委会名义搞促销 众多居民被忽悠 . .新浪网 . 2015-05-114. 武汉物数所2014年大学生夏令营落幕 . .中国科学院 . 2015-05-035. "武汉偏微分方程研讨会"2012年第六次会议在武汉物数所召开 . .中国科学院 . 2015-05-036. 武汉物数所召开数学物理学科发展研讨会 . .中国科学院 . 2015-05-037. 周焕松研究员主要论文 . .中国科学院武汉物理与数学研究所 . 2015-05-03词条标签: 行业人物 科研人员 人物]]