求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

周煥松檢視原始碼討論檢視歷史

事實揭露 揭密真相
前往: 導覽搜尋
周煥松
武漢理工大學首席教授、博士生導師
國籍 中國
母校 華中科技大學
職業 教育科研工作者

周煥松,男,博士武漢理工大學首席教授博士生導師[1]研究員,1986年華中科技大學應用數學系畢業,1992年於中國科學院武漢數學物理研究所獲理學碩士學位。1997年獲瑞士聯邦理工大學(EPFL)理學博士學位。在非線性橢圓型方程及其相關的物理問題的研究方面獲得了系列新結果,並在國際期刊物 上得到發表。其研究結果被30多個國家和地區的200餘位作者發表在60餘種SCI刊物上的論文他引300餘次。作為主要成員先後獲得過中科院自然科學二等獎以及湖北省自然科學獎二等獎等多項省部級獎項。主持過多項國家自然科學基金項目。現任湖北省暨武漢數學學會副理事長[2],《數學物理學報》常務編委。

個人簡介

周煥松,研究員,1986年華中科技大學應用數學系畢業,1992年於中國科學院武漢數學物理研究所獲理學碩士學位。1997年獲瑞士聯邦理工大學(EPFL)理學博士學位。在非線性橢圓型方程及其相關的物理問題的研究方面獲得了系列新結果,並在國際期刊物上得到發表。其研究結果被30多個國家和地區的200餘位作者發表在60餘種SCI刊物上的論文他引300餘次。作為主要成員先後獲得過中科院自然科學二等獎以及湖北省自然科學獎二等獎等多項省部級獎項。主持過多項國家自然科學基金項目。現任湖北省暨武漢數學學會副理事長,《數學物理學報》常務編委。

研究領域

非線性橢圓型偏微分方程

重要消息

20多名中學生通過半年努力完成了一份n=200的同心幻方表,並找出了其中的規律,總結出《偶階同心幻方最新的簡明構造方法》他們的成果得到中科院有關專家的肯定,中科院武漢物理與數學研究所的王征平博士後和周煥松研究員認為"和已有的文獻相比,他們給出的方法更加簡明有效。"

一場"快樂教學法"活動在社區搞起促銷,居民紛紛掏腰包,事後發現買的產品有質量問題,想退又找不着賣家。花園山社區一些居民有點鬱悶中國科學院博導周煥松表示,這些方法只是某些計算中的特例,原本就是"小學奧數"中的方法。學數學側重的是邏輯分析,培養的是一個人的思維能力,並不是單純的計算能力。家長不應盲從。

中國科學院武漢物理與數學研究所在頻標樓一樓報告廳舉行夏令營閉營儀式,2014年大學生夏令營落幕。武漢物數所所長劉買利、研究生部主任李涓出席了儀式 高克林研究員、嚴宗朝研究員、雷皓研究員、周煥松研究員給大家做了分學科報告,隨後營員們分組參觀了實驗室

"武漢偏微分方程研討會"2012年第六次會議在武漢物理與數學研究所波譜樓四樓會議室召開,來自武漢大學、華中師範大學、武漢物理與數學研究所、華中科技大學、中南民族大學等單位的偏微分方程領域的專家教授及研究生共60多名代表參加了此次研討會。研討會由武漢物數所周煥松研究員主持,參會人員積極提問交流,充分探討當前偏微分方程領域的熱點前沿問題。這次作報告的幾位學者既有傑青教授,也有青年研究者,不僅讓大家領略到了專家的學術風采,也給年輕學者提供了很好的展示和交流平台,使大家獲益良多,研討會取得了圓滿的成功。

為進一步凝練學科目標、強化傳統優勢、開拓前沿交叉特色課題,有效提高數學學科的核心競爭力,武漢物理與數學研究所數學物理研究室召開了學科發展研討會。所長劉買利、所長助理王振等應邀參加了研討會。數學物理研究室主任周煥松研究員主持會議。

代表論著

Zhengping Wang and Huan-Song Zhou,Ground state for semilinear Schrodinger equation with sign-changing and vanishing potential,J.Math. Phys. 52(2011), 113704

Y.S.Jiang, Huan-Song Zhou, Schrodinger-Poisson system with steep potential well, J. Differential Equations, 251 (2011), 582-608.

C.A.Stuart & Huan-Song Zhou, Existence of guided cylindrical TM-modes in an inhomogeneous self-focusing dielectric, Mathematical Models & Methods in Applied Sciences, 20(2010)9, 1681-1719

Yongsheng Jiang & Huan-Song Zhou, A sharp decay estimate for nonlinear Schrodinger equations with vanishing potentials, Comm. Pure & Applied Analysis, 9(2010)6, 1723-1730.

Zhengping Wang, Huan-Song Zhou,Positive solution for nonlinear Schrödinger equation with deepening potential well, J. European Math. Soc.,11(2009), 545-573.

Zhengping Wang, Huan-Song Zhou,Positive solutions for a nonhomogeneous elliptic equation on RN without (AR) condition, J. Math. Analysis & Applications,353(2009), 470-479.

Chuangye Liu, Zhengping Wang, Huan-Song Zhou, Asymptotically linear Schrödinger equation with potential vanishing at infinity, J. Differential Equations, 245 (2008) 201–222.

Huan-Song Zhou and Hongbo Zhu, Asymptotically linear elliptic problem on RN, The Quarterly Journal of Mathematics,59(2008), 523 – 541.

Zhengping Wang, Huan-Song Zhou, Uniqueness and radial symmetry of least energy solution for a semilinear Neumann problem, Acta Mathematicae Applicatae Sinica, English Series,24(2008), 473-482.

Wang, Zhengping; Zhou, Huan-Song Positive solution for a nonlinear stationary Schrödinger-Poisson system in R3.Discrete Contin. Dyn. Syst. 18 (2007), 809--816

C.A. Stuart and H.S. Zhou, Global branch of solutions for nonlinear Schrodinger equations with deepening potential well, Proc. London Math. Soc., 92 (2006), 655-681

Axi-symmetric TE-modes in a self-focusing dielectric, SIAM Journal Math Anal., Vol.37, No.1, 218-237, 2006. (with C.A.Stuart)

Positive eigenfunctions of a Schrodingeroperator,Journal of the London Mathematical Society, 72(2005)(2), 429–441(withC.A.Stuart)

Positive solution for - △pu = f(x, u) with f(x, u) growing as up-1 at infinity, Applied Mathematics Letters 17 (2004) 881-887. (with Yisheng Huang)

A Dirichlet problem with asymptotically linear and changing sign nonlinearity, Resvita Matematica Complutense, 16(2003), page: 465-481. (with M.Lucia, P. Magrone)

A constrained minimizing problem and its application to guided TM-modes, Calculus Variations and PDE., 16 (2003) , 335-373. (with C.A. Stuart)

Dirichlet problem of p-Laplacian with nonlinear term f(x,u)∽up-1 at infinity, Morse Theory, Minimax Theory and their Applications to Nonlinear PDE, Editors : H.Brezis, S. Li , J. Liu & P.H. Rabinowitz, International Press 2003, 77-89. (with G.B. Li)

Solutions to semilinear elliptic problems with combined nonlinearities, J. Differential Equations, 185(2002), 200-224. (with S.J. Li and S.P. Wu)

Mutiple solutions to p-Laplacian problem with asymptotic nonlinearity as up-1 at infinity, Journalof The London Math. Soc., (2002)65, 123-138.(with G.B. Li)

An application of a Mountain Pass Theorem, Acta Math. Sinica, 18(2002), 27-36.[7]

A Neumann problem in exterior domain, Manuscripta Math. 106 (2001) 1, 63-74. (with D.M. Cao, M. Lucia)

Existence of guided cylindrical TM-modes in a homogeneous self-focusing dielectric, Annales de l'Institut Henri Poincare Analyse Non Lineaire, 18(2001), 69-96. (with C.A. Stuart)

The existence of a positive solution to asymptotically linear scalar field equations, Proc. Royal Soc. Edinburgh, Ser. A., 130A(2000), 81-105. (with G.B Li)

Solutions for a quasilinear elliptic equation with critical Sobolev exponent and perturbations on RN, Differential and Integral Equations, 13(2000), 595-612.

Applying the Mountain Pass Theorem to Asymptotically Linear Elliptic Equations on RN, Comm. in P.D.E., 24(1999), 1731-1758. (with C.A. Stuart)

Positive solution to p-Laplacian type scalar field equation in RN with nonlinearity asymptotic to up-1 at infinity,Proc. Second International Conference on Nonli. Anal., 1999, Nankai, Eds K.C.Chang & Y.M.Long. (with G.B. Li and L.N. Wu)

Positive solution for a semilinear elliptic equation which is almost linear at infinity, ZAMP, 49 (1998), 896-906.

Multiple positive solutions of nonhomogeneous semilinear elliptic equation in RN, Proc. Royal Soc. Edinburgh, Section A, 126A(1996), 443-463. (with D.M. Cao)

On the existence and LP(RN) bifurcation for semilinear elliptic equation, J. Math. Anal. Applica., 154(1991), 116-133. (with Y.B. Deng & X.P. Zhu)

Existence of multiple positive solutions of inhomogeneous semilinear elliptic problems in unbounded domains, Proc. Royal Soc. Edinburgh, Sec. A, 115A(1990), 301-318. (with X.P. Zhu)

Bifurcation from the essential spectrum of superlinear elliptic equations, Applicable Analysis, 28(1988), 51-66. (with Zhu Xi-Ping)

參考來源

  1. 周煥松個人簡介 ,武漢理工大學, 2019-02-14
  2. 周煥松 ,名人簡歷網