求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

高能光子檢視原始碼討論檢視歷史

事實揭露 揭密真相
前往: 導覽搜尋

高能光子是指處在高頻率的光子,光子頻率越高,能量越高。紫外光、X光、伽馬射線都屬於高能光子的範圍。 光子是量子光學中的術語,它是一種基本粒子,是電磁輻射的量子,這種作用力的效應在微觀層次或宏觀層次都可以很容易地觀察到。[1]

技術應用

這裡討論的是光子在當今技術中的應用,而不是泛指可在傳統光學下應用的光學儀器(如透鏡)。激光的原理是上文討論的受激輻射。 對單個光子的探測可用多種方法,傳統的光電倍增管利用光電效應:當有光子到達金屬板激發出電子時,所形成的光電流將被放大引起雪崩放電。電荷耦合元件(CCD)應用半導體中類似的效應,入射的光子在一個微型電容器上激發出電子從而可被探測到。其他探測器,如蓋革計數器利用光子能夠電離氣體分子的性質,從而在導體中形成可檢測的電流。

經常在工程和化學中被用來計算存在光子吸收時的能量變化,以及能級躍遷時發射光的頻率。例如,在熒光燈的發射光譜的設計中,會使用擁有不同電子能階的氣體分子,然後調整電子的能量並且用這些電子去碰撞氣體分子,這樣,可以得到想要的熒光。 在某些情形下,單獨一個光子無能力激發一個能級的躍遷,而需要有兩個光子同時激發。這就提供了更高分辨率的顯微技術,因為樣品只有在兩束不同顏色的光所照射的高度重疊的部分之內才會吸收能量,而這部分的體積要比單獨一束光照射到並引起激發的部分小很多,這種技術被應用於雙光子激發顯微鏡中。而且,應用弱光照射能夠減小光照對樣品的影響。 有時候兩個系統的能級躍遷會發生耦合,即一個系統吸收光子,而另一個系統從中「竊取」了這部分能量並釋放出不同頻率的光子。這是熒光共振能量傳遞的基礎,被應用於分子生物學來研究蛋白質與蛋白質之間的相互作用.。[2]

光子結構的測量

所謂光子結構的測量,在量子色動力學中是指觀測光子場的量子漲落,這種能量漲落用一個光子的結構方程來描述。對光子結構的測量一般都依賴於對光子與電子,以及正負電子的對撞時的深度非線性散射的觀測。

參考來源