求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

紅外輻射檢視原始碼討論檢視歷史

事實揭露 揭密真相
前往: 導覽搜尋
紅外輻射

紅外線是一種電磁波,位於可見光紅光外端,在絕對零度(-273.15℃) 以上的物體都輻射紅外能量,是紅外測溫技術的基礎。紅外輻射的輻射度、輻射出射度、輻射強度、輻射功率等均是物理中有關紅外輻射的相關計算量。

簡介

1666年,英國物理學家I.牛頓發現,太陽光經過三稜鏡後分裂成彩色光帶──紅、橙、黃、綠、青、藍、紫。1800年,英國天文學家F.W.赫歇耳在用水銀溫度計研究太陽光譜的熱效應時,發現熱效應最顯著的部位不在彩色光帶內,而在紅光之外。因此,他認為在紅光之外存在一種不可見光。後來的實驗證明,這種不可見光與可見光具有相同的物理性質,遵守相同的規律,所不同的只是一個物理參數──波長。這種不可見光稱為紅外輻射,又稱紅外光、紅外線。17~18世紀,許多物理學家認為,光(包括紅外光和紫外光)具有波動的性質,有一定的傳播速度,波長是它的特徵參數並可以測量。可見光的顏色不同,反映了它們的波長不同。紫光的波長最短,紅光的波長最長,紅外輻射的波長則更長,紫外光的波長比紫光更短。1864年,英國物理學家J.C.麥克斯韋從理論上總結了當時已有的電磁學規律,提出了存在電磁波的可能性,它的傳播速度可用純電學量計算出來。後來的實際測量證明,其傳播速度就是光速。因而猜想,光波就是電磁波。1887年,德國科學家H.R.赫茲用實驗證實了這一猜想。

評價

在光譜學中,劃分波段的方法尚不統一。一般分別以0.75~3微米、3~40微米和40~1000微米作為近紅外、中紅外和遠紅外波段。近紅外是可以用玻璃作為透射材料和用硫化鉛探測器進行檢測的波段。中紅外原來是以稜鏡作為色散元件的波段,但後來都採用光柵作為色散元件,40微米這個界限不再有意義。但是,40微米又是石英能讓紅外輻射透過的起始波長,故仍可作為中紅外波段與遠紅外波段的界限。在遠紅外波段的長波端,傳統的幾何光學和微波傳輸技術都不適用,需要發展新的技術。新技術適用的波段也可能是一個新名稱的波段。此外,遠紅外波段內出現激光,以輻射源是否具有相干性作為遠紅外與微波劃界的標準已不適用。因而暫以1000微米作為遠紅外波段的界限,把波長為1~3毫米的電磁波稱為短毫米波因此,輻射是從物質中發射出來的。任何一塊小的物體都包含着極大數目的原子或分子。每個原子或分子都有很多能級,從高能級躍遷到低能級都能發射光子。實際發射出來的電磁波就是這些大量光子的總和。各個原子或分子發射光子的過程基本上是互相獨立的;光子發射的時間有先有後。光子發射時,原子或分子在空間的取向有各種可能,因而光子可向各個方向發射,其電磁場振動也可有各種方向;再加上物體內各能級之間的相互影響,兩能級之間的能量差會有極小的變動。所有這些因素的聯合作用,使所發射出來的輻射包含着各種頻率,沒有一定的相位,沒有一定的偏振,這就是非相干輻射。[1]

參考文獻