電偶極矩檢視原始碼討論檢視歷史
電偶極矩 |
連接+q和-q兩個點電荷的直線稱為電偶極子的軸線,當所考慮的電場內的一點到這兩個點電荷的距離比它們之間的距離大的多時,從-q指向+q的矢徑r和電量q的乘積定義為電偶極子的電矩,也稱電偶極矩。
簡介
連接+q和-q兩個點電荷的直線稱為電偶極子的軸線,從-q指向+q的矢徑r和電量q的乘積定義為電偶極子的電矩,也稱電偶極矩,通常用矢量p表示。電偶極矩的物理意義是對電荷系統的極性的一種衡量。在兩個點電荷的簡單情形中,一個帶有電荷 +q,另一個帶有電荷 -q,則電偶極矩為:p=qr。其中r是從負電荷指向正電荷的位移矢量。這意味着電矩的矢量從負電荷指向正電荷。注意到電場線的方向是相反的,也就是說,從正電荷開始,在負電荷結束。這裡並沒有矛盾,因為電偶極矩與電荷的位置有關,與電場線無關。其中每一個ri是一個矢量,從某一個參考點指向電荷qi的值與參考點的選擇無關,只要整個系統的總電荷為零。這個公式在n= 2時,與前一個公式是等價的。電矩矢量從負電荷指向正電荷的事實,與一個點的位置矢量是從原點指向該點的事實有關。當整個系統是電中性時,電偶極矩最容易明白,例如一對相反的電荷,或位於均勻電場內的導體。對於這類系統,電偶極矩的值與參考點的選擇無關。
評價
首先求解金屬板上、下方的電場,這一問題可利用鏡像法來求解。如圖2所示,板上方的電場是點電荷q與位於金屬板下方且位置與q相對於金屬板對稱的點電荷- q(鏡像電荷)產生的電場的疊加;板下方的電場是點電荷q與位於金屬板上方且位置與q重疊的點電荷- q(鏡像電荷)產生的電場的疊加,即為零。由高斯定理(高斯面為上表面是金屬板上表面、下表面位於金屬板內部或下方的無限大柱形面)可知,金屬板上的感應電荷即等於通過金屬板的上表面的電位移矢量通量(法線方向向上)。這一通量可採用微積分的方法來計算,但計算比較麻煩,現介紹一種簡便方法。過點電荷q作一個與金屬板平行的平面,則從這一點電荷發出的位於這一平面下方的電場線均要射向金屬板,而從這一點電荷發出的位於這一平面上方的電場線則不會。所以,點電荷q產生的電場通過金屬板上表面的電位移矢量通量等於-12q(金屬板上表面的法線向上);同理,點電荷- q產生的電場通過金屬板上表面的電位移矢量通量也等於-12q,因此,金屬板上區域的電場通過金屬板上表面的通量等於- q,這也就是金屬板上的感應電荷。[1]