求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

標準正態分布檢視原始碼討論檢視歷史

事實揭露 揭密真相
前往: 導覽搜尋
標準正態分布

來自 網絡 的圖片

標準正態分布---standard normal distribution

標準正態分布又稱為u分布,是以0為均數、以1為標準差的正態分布,記為N(0,1)。

標準正態分布曲線下面積分布規律是:在-1.96~+1.96範圍內曲線下的面積等於0.9500,在-2.58~+2.58範圍內曲線下面積為0.9900。統計學家還制定了一張統計用表(自由度為∞時),藉助該表就可以估計出某些特殊u1和u2值範圍內的曲線下面積。

正態分布的概率密度函數曲線呈鐘形,因此人們又經常稱之為鐘形曲線。我們通常所說的標準正態分布是位置參數均數為0, 尺度參數:標準差為1的正態分布(見右圖中綠色曲線)。

簡介

正態分布(Normal distribution)又名高斯分布(Gaussian distribution),是一個在數學、物理及工程等領域都非常重要的概率分布,在統計學的許多方面有着重大的影響力。期望值μ=0,即曲線圖象對稱軸為Y軸,標準差σ=1條件下的正態分布,記為N(0,1)。

正態分布的概率密度函數曲線呈鐘形,因此人們又經常稱之為鐘形曲線。我們通常所說的標準正態分布是位置參數均數為0, 尺度參數:標準差為1的正態分布(見右圖中綠色曲線)。

正態分布中一些值得注意的量:

密度函數關於平均值對稱

平均值與它的眾數(statistical mode)以及中位數(median)同一數值。

函數曲線下68.268949%的面積在平均數左右的一個標準差範圍內。

95.449974%的面積在平均數左右兩個標準差的範圍內。

99.730020%的面積在平均數左右三個標準差的範圍內。

99.993666%的面積在平均數左右四個標準差的範圍內。

函數曲線的反曲點(inflection point)為離平均數一個標準差距離的位置。

評價

深藍色區域是距平均值小於一個標準差之內的數值範圍。在正態分布中,此範圍所占比率為全部數值之68%,根據正態分布,兩個標準差之內的比率合起來為95%;三個標準差之內的比率合起來為99%。[1]

在實際應用上,常考慮一組數據具有近似於正態分布的概率分布。若其假設正確,則約68.3%數值分布在距離平均值有1個標準差之內的範圍,約95.4%數值分布在距離平均值有2個標準差之內的範圍,以及約99.7%數值分布在距離平均值有3個標準差之內的範圍。稱為"68-95-99.7法則"或"經驗法則"。[1]

參考文獻