求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

林祥檢視原始碼討論檢視歷史

事實揭露 揭密真相
前往: 導覽搜尋
林祥
北京科技大學化學與生物工程學院

林祥,男,北京科技大學化學與生物工程學院副教授。

人物簡歷

2018/11至2019/11 英國Bradford大學,訪問學者,高分子加工成型及功能材料

2014/03至2016/06 北京科技大大學化生學院,博士後,功能高分子複合材料加工

2010/09至2013/12 北京化工大學機電工程學院,工學博士,高分子加工成型

2007/09至2010/07 北京化工大學機電工程學院,工學碩士,加工流變理論及儀器設計

2003/09至2007/07 北京化工大學機電工程學院,工學學士,機械工程及自動化

科研方向

高分子複合材料的加工及納米複合材料的性能調控 特種聚氨酯功能材料的材料研發及工藝技術; 導電/導熱聚氨酯材料的結構設計及製備; 高分子材料加工流變學及增材製造 3D打印過程的流變學研究及打印製件的力學增強 原理; 加工過程的數字化研究; 全生物降解功能高分子材料的製備與加工 納米複合材料的製備與加工; 水溶性高分子複合材料的相態界面調控,結構設計與性能表徵; 納米複合材料的加工流變特性表徵及應用; 社會職務:中國塑協專家委員會委員,中英科技橋(Science Bridge China-UK)先進高分子材料實驗聯合研究中心(AMRI)成員

科研業績

Ø 國家軍委科委重點專項2022,****子課題

Ø 國家自然科學基金面上項目2022年(52173028,直接經費58萬)

Ø NSFC-浙江省聯合基金重點支持項目(共256萬,北科128萬),子課題,參與

Ø 國家173重點專項,子課題負責人,162萬,2019-2024,在研;

Ø 西安204所氟氮資源國重實驗室開放基金,20萬,2020-2022,主持,在研;

Ø 中石化頁岩油氣國家重點實驗室開放基金,13萬,2020-2021,主持,在研;

Ø 國家自然科學青年基金項目:NSFC 51503017(23.2萬),2016-2018,主持,結題;

Ø 國家自然科學基金面上項目:NSFC 51473108(75萬),2015-2018 ,子課題15萬,結題;

Ø 中國博士後研究基金:2015M5570928(5萬),2015-2016 ,主持,結題;

Ø 中央高校基本科研業務基金,FRF-TP-14-013A1,FRF-TP-15-019A2,17萬,2014-2016,結題;

Ø 企業項目(中石化石油工程技術研究院),2019-**-FW1907-0021,40萬,主持,結題;

學術成果

論文論著

[1] Lin, X.; Gao, J.; Wang, J.; Wang, R.; Gong, M.; Zhang, L.; Lu, Y.; Wang, D.; Zhang, L. Desktop printing of 3D thermoplastic polyurethane parts with enhanced mechanical performance using filaments with varying stiffness. Additive Manufacturing 2021, 47, 102267.

[2] Xiang Lin* et al. Experimental analysis of the tensile property of FFF-printed elastomers. Polymer Testing, 2020, 90: 106687.

[3] Liang Zhang, Xiang Lin et al. High-dielectric-permittivity silicone rubbers incorporated with polydopamine-modified ceramics and their potential application as dielectric elastomer generator. Materials Chemistry and Physics, 2020, 241: 122373.

[4] Xiang Lin * et al. Highly improved PP/CNTs sheet prepared by tailoring crystallization morphology through solid-phase die drawing and multilayer hot compression. Polymer Crystallization, 2020, online.

[5] Xiang Lin* et al. Breakage of CNT agglomerates within polypropylene matrix by solid phase die drawing. J. Appl. Polym. Sci., 2020, accepted.

[6] Xiang Lin* et al. Tensile properties and die swell behaviours of highly filled polypropylene nanocomposites. Plastics, Rubber and Composites, 2020, 49(2): 47–56.

[7] Xiang Lin* et al. Superior Stretchable Conductors by Electroless Plating of Copper on Knitted Fabrics. ACS Appl. Electron. Mater. 2019, 1: 397−406.

[8] Yu Yang, Minhao Yang, Sumei Zhang, Xiang Lin, Zhi-Min Dang, Dongrui Wang. Photoinduced healing of polyolefin dielectrics enabled by surface plasmon resonance of gold nanoparticles. J. Appl. Polym. Sci., 2019, 136, 47158.

[9] Xiang Lin * et al. Influence of the morphological structure of carbon nanotubes on the viscoelasticity of PMMA-based nanocomposites. J. Appl. Polym. Sci., 2018, 135, 46444.

[10] Xiang Lin* et al. Dependence of Rheological Behaviors of Polymeric Composites on the Morphological structure of Carbonaceous Nanoparticles. J. Appl. Polym. Sci., 2018, 135, 46416.

[11] Xiang Lin* et al. Experimental evaluation of the pressure sensitivity of molten polymer viscosity with a triple-stage capillary rheometer. Appl. Rheol., 2018, 28 (2), 25503.

[12] Xiang Lin* et al. Enhanced dielectric properties of immiscible poly (vinylidene fluoride)/low density polyethylene blends by inducing multilayered and orientated structures. Composites Part B, 2017, 114: 58-68.

[13] Xiang Lin et al. Improved dielectric performance of polypropylene/multi-walled carbon nanotubes nanocomposites by solid phase orientation. J. Appl. Polym. Sci., 2016, 133: 42893.

[14] Xiang Lin et al. Experimental Study of the Rheological, Mechanical and Dielectric Properties of LDPE/MgO Nanocomposites. J. Appl. Polym. Sci., 2016, 133: 43038.

[15] Xiang Lin et al. Enhanced Electric Displacement Induce Large Energy Density in Polymer Nanocomposite Containing Core-Shell Structured BaTiO3@TiO2 Nanofibers. Journal of Materials Chemistry A, 2016, 4: 2314-2320.

[16] Xiang Lin et al. Effect of the compatibility on dielectric performance and breakdown strength of poly(vinylidene fluoride)/low density polyethylene blends. Journal of Applied Polymer Science, 2015, 132: 42507.

[17] Xiang Lin et al. Capillary Study on Geometrical Dependence of Shear Viscosity of Polymer melts. Journal of Applied Polymer Science, 2014, 131(6): 39982.

[18] Junwei Zha, Xiang Lin et al. Improved mechanical and electrical properties in electrospun polyimide/multiwalled carbon nanotubes nanofibrous composites. Journal of Applied Physics, 2014, 116, 134104.

[19] Xiang Lin et al. Shear-induced Crystallization Morphology and Mechanical Property of High Density Polyethylene in Micro-injection molding. Journal of Polymer Research, 2013, 20(4): 1-12

[20] Xiang Lin et al. Geometrical Dependence of Viscosity of Polymethylmethacrylate Melt in Capillary Flow. Journal of Applied Polymer Science, 2013, 130: 3384-3394.

[21] 譯著:《國際塑料手冊》,北京:化學工業出版社,2010年;

[22] 譯著:《雙螺杆擠出技術》,北京:化學工業出版社,2012年;

[23] 譯著:《橡塑擠出模具與工程模擬》,北京,化學工業出版,2019年;

[24] 專利:ZL 2009 10076987.4,任冬雲、林祥等:一種廣義牛頓流體唯一真實黏度的裝置和方法

專利:ZL 2016 10393236.5,張立群、林祥等:一種多階螺杆擠出式聚烯烴鹵化設備及聚烯烴鹵化方法[1]

參考資料