失效率檢視原始碼討論檢視歷史
![]() |
失效率是一個科技名詞。
世界三大漢語詞典分別是中國大陸的《 漢語大詞典[1]》(共13冊,5.6萬詞條,37萬單詞)、中國台灣的《 中文大辭典 》(共10冊,5萬詞條,40萬單詞)以及日本的《 大漢和辭典 》(共13冊,4.9萬詞條,40萬單詞)。漢字是記錄漢語的文字[2],它已有六千年左右的歷史,是世界上最古老的文字之一。
名詞解釋
在極值理論中,失效率稱為「強度函數」;在經濟學中,稱它的倒數為「密爾(Mill)率」;在人壽保險事故中,稱它為「死亡率強度」。
按上述定義,失效率是在時刻t尚未失效產品在t+△t的單位時間內發生失效的條件概率。即它反映t時刻失效的速率,也稱為瞬時失效率。
分類
失效率的觀測值是在某時刻後單位時間內失效的產品數與工作到該時刻尚未失效的產品數之比,即失效率曲線:典型的失效率曲線 失效率(或故障率)曲線反映產品總體個壽命期失效率的情況。圖1為失效率曲線的典型情況,有時形象地稱為浴盆曲線。失效率隨時間變化可分為三段時期:
早期失效
早期失效期,失效率曲線為遞減型。產品投稿使用的早期,失效率較高而下降很快。主要由於設計、製造、貯存、運輸等形成的缺陷,以及調試、跑合、起動不當等人為因素所造成的。當這些所謂先天不良的失效後且運轉也逐漸正常,則失效率就趨於穩定,到t0時失效率曲線已開始變平。t0以前稱為早期失效期。針對早期失效期的失效原因,應該儘量設法避免,爭取失效率低且t0短。
偶然失效
偶然失效期,失效率曲線為恆定型,即t0到ti間的失效率近似為常數。失效主要由非預期的過載、誤操作、意外的天災以及一些尚不清楚的偶然因素所造成。由於失效原因多屬偶然,故稱為偶然失效期。偶然失效期是能有效工作的時期,這段時間稱為有效壽命。為降低偶然失效期的失效率而增長有效壽命,應注意提高產品的質量,精心使用維護。加大零件截面尺寸可使抗非預期過載的能力增大,從而使失效率顯著下降,然而過份地加大,將使產品笨重,不經濟,往往也不允許。
耗損失效
耗損失效期,失效率是遞增型。在t1以後失效率上升較快,這是由於產品已經老化、疲勞、磨損、蠕變、腐蝕等所謂有耗損的原因所引起的,故稱為耗損失效期。針對耗損失效的原因,應該注意檢查、監控、預測耗損開始的時間,提前維修,使失效率仍不上升,如圖1中虛線所示,以延長壽命不多。如果在進入耗損失效期之前,進行必要的預防維修,它的失效率仍可保持在偶然失效率附近,從而延長產品的偶然失效期。當然,修復若需花很大費用而延長壽命不多,則不如報廢更為經濟。
相關信息
失效模式
失效模式與影響分析
失效模式與影響分析(英文:Failure mode and effects analysis,FMEA),又稱為失效模式與後果分析、失效模式與效應分析、故障模式與後果分析或故障模式與效應分析等,是一種操作規程,旨在對系統範圍內潛在的失效模式加以分析,以便按照嚴重程度加以分類,或者確定失效對於該系統的影響。FMEA廣泛應用於製造行業產品生命周期的各個階段;而且,FMEA在服務行業的應用也在日益增多。失效原因是指加工處理、設計過程中或項目/物品(英文:item)本身存在的任何錯誤或缺陷,尤其是那些將會對消費者造成影響的錯誤或缺陷;失效原因可分為潛在的和實際的。影響分析指的是對於這些失效之處的調查研究。
基本術語
失效模式(又稱為故障模式)
觀察失效時所採取的方式;一般指的是失效的發生方式。
失效影響(又稱為失效後果、故障後果)
失效對於某物品/項目(英文:item)之操作、功能或功能性,或者狀態所造成的直接後果。
約定級別(又稱為約定級)
代表物品/項目複雜性的一種標識符。複雜性隨級數接近於1而增加。
局部影響
僅僅累及所分析物品/項目的失效影響。
上階影響
累及上一約定級別的失效影響。
終末影響
累及最高約定級別或整個系統的失效影響。
失效原因(又稱為故障原因)
作為失效之根本原因的,或者啟動導致失效的某一過程的,設計、加工處理、質量或零部件應用方面所存在的缺陷
嚴重程度(又稱為嚴重度)
失效的後果。嚴重程度考慮的是最終可能出現的損傷程度、財產損失或系統損壞所決定的,失效最為糟糕的潛在後果。
歷史
從每次的失效/故障之中習得經驗和教訓,是一件代價高昂而又耗費時間的事情,而FMEA則是一種用來研究失效/故障的,更為系統的方法。同樣,最好首先進行一些思維實驗。
二十世紀40年代後期,美國空軍正式採用了FMEA。後來,航天技術/火箭製造領域將FMEA用於在小樣本情況下避免代價高昂的火箭技術發生差錯。其中的一個例子就是阿波羅空間計劃。二十世紀60年代,在開發出將宇航員送上月球並安全返回地球的手段的同時,FMEA得到了初步的推動和發展。二十世紀70年代後期,福特汽車公司在平託事件之後,出於安全和法規方面的考慮,在汽車行業採用了FMEA。同時,他們還利用FMEA來改進生產和設計工作。
儘管最初是由軍事領域所建立的方法,但FMEA方法學已廣泛應用於各種各樣的行業,包括半導體加工、飲食服務、塑料製造、軟件以及醫療保健行業。在設計和加工處理格式方面,FMEA已經結合到了高級產品質量規劃(英文:Advanced Product Quality Planning,APQP),以便提供基本的風險化減手段以及實現對於預防策略的時機選擇。汽車行業行動工作組 (英文Automotive Industry Action Group,AIAG) 要求在汽車的APQP過程中運用FMEA方法,並且還發布了詳細的一份關於如何應用這一方法的手冊。對於每種潛在的原因,都必須針對其對於產品或加工處理過程的影響而加以考慮,並根據相應的風險,確定所要採取的行動措施,並在行動措施完成之後對風險重新加以評估。已經進一步將這種方法與自己的基於失效模式的設計審核(英文:Design Review Based on Failure Mode,DRBFM)方法結合在一起。2013年,這一方法還同時得到了美國質量協會(英文:American Society for Quality)的支持。美國質量協會針對應用這種方法而提供有若干的詳細指南。
實施
在FMEA之中,失效之優先級別的確定依據的是它們的後果到底有多麼嚴重,它們究竟出現得有多麼頻繁以及可被發現究竟有多麼容易。FMEA同時還記載當前對於失效風險的了解和行動措施,以便用於持續改進。在設計階段,FMEA的應用旨在避免將來發生失效。之後,在過程控制當中以及在相應過程的不斷運行之前和過程當中,都會用到FMEA。在理想情況下,在最早的概念設計階段就開始使用FMEA,並且繼續加以使用,直至貫穿產品或服務的整個生命周期。
FMEA的目的在於從優先級別最高的失效着手,採取行動措施,從而消除或減少失效。FMEA還可以用於評價風險管理優先級別,以便緩和已知形成威脅的薄弱部位。FMEA有助於選擇補救措施,從而減少因為系統失效(故障)所造成的若干生命周期後果(風險)的累積效應。
在2013年許多正規的質量體系也在採用FMEA,比如 QS-9000 或 ISO/TS 16949。
FMEA的應用
在處理失效模式及與其相關的原因的時候,FMEA可以為我們提供一種分析手段。在考慮設計之中可能存在的失效之時,比如安全、成本、性能、質量和可靠性,為了避免這些失效的發生,工程師可以利用FMEA,獲得大量關於如何變更開發/製造過程的信息。FMEA為我們提供的是一種簡便易用的,用來確定究竟哪種風險最令人擔心的工具,從而需要我們在問題真正發生之前,採取相應的行動措施,避免它的發生。這些規格說明的編制,將會保證相應的產品能夠滿足預定的需求。
參考文獻
- ↑ 中國漢字博大精深,作為中國人的你知道有多少個嘛?,搜狐,2022-08-14
- ↑ 漢語的發展史,你了解多少:你真的會說漢語嗎?,搜狐,2021-11-12