凝聚態檢視原始碼討論檢視歷史
凝聚態,指的是由大量粒子組成,並且粒子間有很強的相互作用的系統。自然界中存在着各種各樣的凝聚態物質。固態和液態是最常見的凝聚態。低溫下的超流態,超導態,玻色-愛因斯坦凝聚態,磁介質中的鐵磁態,反鐵磁態等,也都是凝聚態。
歷史
經典物理學 海克·卡末林·昂內斯與約翰內斯·范德瓦耳斯在氦氣的液化泵旁(1908年攝於萊頓) 英國化學家漢弗里·戴維是凝聚態物理學的先驅之一。他在十九世紀初即進行了相關的研究。戴維發現當時已知的40種化學元素中有26種元素的單質具有一些共有的性質,如表面有金屬光澤、延展性強、電導率及熱導率高。這意味着原子可能並不像約翰·道爾頓所預見的那樣不可分,而是具有內部結構。戴維進一步提出像氮氣以及氫氣這樣常溫常壓下為氣體的單質,在一定的條件下可以液化,並且它們液化後也會具有一定的金屬性。 1823年,當時還是戴維實驗室的助手的邁克爾·法拉第實現了氯氣的液化,並隨後又實現了除氮、氫、氧外其他已知元素氣體單質的液化。1869年,愛爾蘭化學家托馬斯·安德魯斯在對液體到氣體的相變進行了一定的研究後,引入了臨界點這一概念來描述系統同時具有液體與氣體特性時的條件。隨後,荷蘭物理學家約翰內斯·范德瓦耳斯提出了范德瓦耳斯方程,為後來較高溫度下的測量結果預測系統臨界行為提供理論基礎。1898年,詹姆斯·杜瓦實現了氫氣的液化。十年後,海克·卡末林·昂內斯實現了氦氣的液化。 保羅·德魯德在1900年提出了首個金屬內電子運動的經典模型。德魯德在其模型中以金屬中電子的行為類似氣體分子為出發點描述了金屬的一些性質。德魯德模型也是首個能夠解釋像維德曼–夫蘭茲定理這樣的經驗定律的微觀模型。儘管德魯德模型取得了一定的成功,但其仍不能解釋一些重要問題,如電子對於金屬熱容的影響,金屬的磁性質,以及低溫條件下電阻率與溫度的關係。 1911年,在實現氦氣液化三年後,當時在萊頓大學工作的昂內斯發現了汞的超導性。他發現在溫度低於某一特定值時,汞的電阻率變為零。這一現象令當時頂尖的理論物理學家感到震驚,並在隨後的幾十年中一直是未解之謎。1922年,阿爾伯特·愛因斯坦這樣評價當時對於超導的理論解釋:「目前我們對於複合系統的量子力學的深遠意義仍一無所知。在這些模糊的概念的基礎上,我們距離構造出(能描述超導現象的)理論的目標仍很遙遠。」
量子力學的引入 德魯德的經典模型後來得到了沃爾夫岡·泡利、阿諾·索末菲及費利克斯·布洛赫等人的補充修正。泡利首先意識到自由電子在金屬內部的行為必須遵守費米-狄拉克統計。基於這個思路,他在1926年發展出順磁性理論。泡利開啟了現代固體物理學的發展。同年,索末菲提出的考慮到電子遵守的費米-狄拉克統計的理論比較完滿地解決了金屬的熱容問題。兩年後,布洛赫利用量子力學的原理與方法來描述在周期性晶格中的電子的運動,說明連續能帶的形成機制。1931年,亞蘭·威爾遜發表論文闡明半導體的物理性質:半導體是帶隙較為狹窄的絕緣體,被激發的電子可以從價帶跳過帶隙至導帶進行導電。1933年,索末菲與漢斯·貝特對於金屬量子力學理論給出權威評論,詳細論述了整個那時期的發展。1947年,約翰·巴丁、沃爾特·布拉頓及威廉·肖克利製成了首個基於半導體的晶體管。這項創舉引發了電子工程學的一次革命。 首個點接觸型晶體管的仿製品(藏于貝爾實驗室) 1879年,約翰霍普金斯大學的埃德溫·霍爾做實驗實現詹姆斯·麥克斯韋在著作《電磁通論》里提出的論述。霍爾發現,當外磁場垂直於導體中的電流密度時,導體會產生一個同時垂直於電流密度及外磁場的電場,以抵消外磁場對於導體內電荷載子的影響。這種源於導體中電荷載子的正負電性及其它性質的現象就是有名的霍爾效應。但這一效應在當時並沒有得到完滿的解釋,因為電子是在18年後才被約瑟夫·湯姆孫在實驗中發現。雖然後來發展出的經典理論可以解釋從實驗得到的關於鹼金屬與某些其它金屬的霍爾係數,它不能解釋電荷載子的正負電性。1929年,魯道夫·佩爾斯對於正霍爾效應給出理論解釋。在正霍爾效應里,電流載子帶有正價。佩爾斯表示,這是因為在能帶邊緣區域的電子,其物理行為貌似帶有正價。隔年,列夫·朗道分析了磁場對於二維電子氣體的影響。他提議,在恆定均勻磁場中,電子會在垂直於磁場的平面內做圓周運動,並且這種運動是簡諧的;電子能量是量子化的,形成朗道能級。這論述基礎地解釋了後來於1980年實驗發現的量子霍爾效應。 早在公元4000年前的中國,物質的磁性就已為人們所熟知。然而,近代的磁學研究直至十九世紀法拉第及麥克斯韋創立電動力學後才正式起步。相關的研究包括基於物質磁化過程的不同將它們區分為鐵磁性物質、順磁性物質或是抗磁性物質。皮埃爾·居里曾研究過磁場與溫度的關係,並發現了鐵磁性物質相變的居里點。1906年,皮埃爾·外斯引入了磁疇這一概念來解釋鐵磁性物質的主要特性。1925年,喬治·烏倫貝克與薩繆爾·高斯密特合作發現了電子自旋。同年,威廉·楞次與恩斯特·伊辛共同創立的伊辛模型是首個自微觀層面描述物質磁性的數學模型。他們將磁性物質看作是由周期性自旋晶格組成的,而物質的磁性則是這些晶格整體的效應。通過伊辛模型,人們可以精確地得出自發磁化在一維晶格中並不會發生,而只能產生在更高維的晶格中。後續更為深入的研究包括布洛赫提出的自旋波以及路易·奈爾就反鐵磁性所做的研究等等。這些研究催生了新的磁材料以及受到廣泛應用的磁儲存設備。
現代多體物理學 在高溫超導體上懸浮的磁鐵。現在的物理學家有使用AdS/CFT對偶來研究高溫超導現象。 二十世紀三十年代,索末菲模型與鐵磁性物質的自旋模型向物理學家展示了量子力學方法在解決凝聚態物質問題時的有效性。然而,那時還有一些尚未解決的問題,其中較為突出的是物質超導性的描述與近藤效應。第二次世界大戰後,物理學家開始採用量子場論的一些方法來解決凝聚態物質問題。其中較為有名的事例是准粒子這一概念的引入,及其對於固體內集體激發問題的解決。俄羅斯物理學家列夫·朗道也採用這一方法解決了低溫條件下費米子間相互作用的問題。他所引入的准粒子現在被物理學家稱作「朗道准粒子」。朗道還發展了連續相變的平均場論。這一理論以自發對稱性破缺來描述有序相,同時引入序參數這一概念來區分有序相。1965年,約翰·巴丁、利昂·庫珀與約翰·施里弗,基於兩個自旋相反的電子彼此之間由於聲子媒介而相互吸引,因此形成「庫珀對」這一現象,提出了BCS理論,最終從理論上解釋了超導現象。 量子霍爾效應:霍爾電阻率在不同方向上的分量各自作為外磁場的函數。 臨界現象是二十世紀六十年代的研究熱點之一。這一研究方向主要是關於系統的相變以及可觀測的臨界行為。利奧·卡達諾夫、本傑明·維多姆及邁克爾·菲舍爾提出了臨界指數及維多姆標度等方法。這些方法後來於1972年由肯尼斯·威耳遜以量子場論中重正化群的形式進行了整合。 1980年,克勞斯·馮·克利青發現量子霍爾效應,即在低溫下強磁場中,二維電子氣的霍爾電導是一個基礎常數的整數倍。這基礎常數稱為電導量子,e/h;其中,e是基本電荷,h是普朗克常數。他還發現這一現象與像雜質含量或界面性質等的系統不規則之處無關,只與電導量子有關。翌年,羅伯特·勞夫林對於這未曾預料到的高精密度整數結果給出理論解釋,雖然他並未明確指出,但這理論意味着霍爾電導可以用一個稱為陳省身數的拓撲不變性來描述。1982年,霍斯特·施特默與崔琦發現了分數量子霍爾效應,即霍爾電導是電導量子的有理數倍。分數量子霍爾效應與整數量子霍爾效應的物理機制不同,後者可以忽略電子間的相互作用,而前者必須假定電子間的相互作用,需要用「多電子波函數」來解釋。隔年,勞夫林利用變分法得出勞夫林波函數,從而對於這一效應給出理論解釋,並且說明這理論會導致帶有分數電荷的准粒子。物理學者稱這准粒子為複合費米子,並且闡明,電子的分數量子霍爾效應可以詮釋為複合費米子的整數霍爾效應。分數量子霍爾系統展示出的各種物理現象仍是的研究熱點之一。 由丹·謝赫特曼發現的准晶體是晶體學的一項創舉。1982年,謝赫特曼觀察到一些金屬合金出現異乎尋常的衍射圖譜。這些衍射圖譜顯示這些合金的結構是有序的,但卻不具備平移對稱性。在准晶體被發現後,國際晶體學聯合會考慮到非周期性結構調整了對於晶體的定義。對於軟物質的研究在二十世紀下半葉也取得了一些重大的進展。其中值得一提的是保羅·弗洛里及皮埃爾-吉勒·德熱納等人對於像聚合物及液晶這樣的軟物質的熱力學平衡的研究。 自從發現超導現象後以來,物理學者不斷嘗試提升其轉變溫度。1986年,卡爾·米勒與約翰內斯·貝德諾爾茨發現了首個高溫超導體,轉變溫度為35K溫度。後來物理學家發現它是強相關材料的一種。高溫超導體的發現引起了物理學界對於強相關材料的興趣。在這種材料中,電子間的相互作用對於材料的特性有很大的影響。但物理學家仍不能從理論上得到對於高溫超導體性質完善的解釋,而強相關材料也將在一段時期里會是研究熱點之一。 2012年,一些研究者發現六硼化釤可能是一種拓撲絕緣體。其所具有的一些性質與早前對於拓撲絕緣體的理論預言相吻合。此前人們已經知道六硼化釤是一種近藤絕緣體,即強相關電子材料。如果其內部存在拓撲界面態的話,那麼它就會是一種具有強電子相關性的拓撲絕緣體。 凝聚態物理學的研究焦點包括強相關材料,量子相變以及量子場論在凝聚態系統中的應用。所要解決的問題包括高溫超導性、拓撲有序以及石墨烯與碳納米管這樣的新型材料的理論描述。
理論研究
理論凝聚態物理學旨在通過建立理論模型來使人們理解物質狀態特性。這包括建立固體的電子模型,例如德魯德模型、能帶結構模型以及密度泛函理論。理論凝聚態物理學研究者還發展了相變的理論模型,例如金茲堡-朗道方程、臨界指數以及量子場論及重正化群的數學技巧的應用。現代的理論研究還包括電子結構的數值計算以及使用數學理論來理解高溫超導、拓撲相以及規範對稱性這樣的現象。
湧現 主條目:湧現 湧現是理論凝聚態物理學中一個重要的概念。它是指粒子在生成複合體時物理行為所發生的劇烈變化。比如人們儘管對於單一電子及晶格的微觀性質已經有了充分的認識,但對由這些單一客體組成的高溫超導體所顯示出的一系列現象卻並不能給出較好的解釋。湧現與還原是兩種完全對立的概念。根據還原論,只要能找到主導萬物的大自然定律,則可知道宇宙的奧秘。 近期,物理學者發現,在某些凝聚態物理學案例里,集體激發的物理行為貌似真空里的光子、電子、膠子與夸克。這意味着這些基礎粒子源自於同樣的機制,即在真空里的弦網凝聚(string-net condensation)。從這機制產生的物理行為是一種湧現現象。湧現特性還可能發生在材料界面,比如鋁酸鑭-鈦酸鍶界面,假設將鋁酸鑭與鈦酸鍶這兩塊非磁絕緣體連接在一起,則會令人茫然費解地出現導電性、超導性及鐵磁性。
固體電子理論 主條目:能帶結構 物質的金屬態歷來是固體性質研究的一個重要的組成部分。德魯德模型是對於金屬的第一個理論描述。這一模型認為:移動於金屬內部的電子,其物理行為就好像理想氣體。德魯德模型可以解釋維德曼–夫蘭茲定理,即各種金屬的熱導率與電導率的比率跟溫度呈正比,但是,它對於金屬比熱給出自相矛盾的結論無法解釋。這一經典模型後來由索末菲通過引入費米-狄拉克統計進行了改進,得到了半經典的自由電子模型。這一模型能夠更精準地解釋維德曼–夫蘭茲定理,也能夠粗略解答金屬比熱問題,但是它依然無法解釋為什麼自由電子的假設能夠適用於金屬這一基礎問題。另一方面,馬克斯·馮·勞厄與保羅·克尼平等人早在1912年就對金屬的結構進行了研究。他們通過觀察到晶體的X射線衍射圖樣總結出:金屬的周期型結構來源於其中的原子構成的晶格。瑞士物理學家布洛赫將量子力學理論應用於金屬,又將金屬晶格近似為周期勢場,從而得出了周期勢場中薛定諤方程的解,即布洛赫波,是由與周期勢場具有一致周期的周期函數乘上自由電子的波函數後得到,這意味着電子可以自由地移動於晶格。從這點上,他獲得很多與實驗結果相符合的重要結果,因此奠定了金屬的量子力學理論基礎。 通過解析多體系統的波函數來計算金屬的電子結構通常是一件非常困難的工作,因此必需使用近似技術來獲得有意義的理論預測。盧埃林·托馬斯與恩里科·費米在二十世紀二十年代提出托馬斯-費米模型,其通過將定域電子密度看作變分參量來估算系統的能量與電子密度。由於托馬斯-費米模型並沒有將「交換對稱能量」與「電子-電子相關能量」納入考量,它無法預測由分子與固體的穩定存在。二十世紀三十年代,道格拉斯·哈特里、弗拉基米爾·福克及約翰·斯萊特對托馬斯-費米模型加以改進,提出了哈特里-福克方程,其特別考慮到電子波函數間的交換對稱性。通常而言,哈特里-福克方程很難使用,只有對於自由電子案例,可以獲得完全解析解。在1964年至1965年之間,沃爾特·科恩、皮埃爾·奧昂貝格和沈呂九提出了兩篇關於密度泛函理論的開創性論文,對於金屬的塊體性質及界面性質給出較為精準的描述。密度泛函理論自二十世紀七十年代就已廣泛地應用在固體的能帶結構計算。
對稱性破缺 主條目:對稱性破缺 物質的一些特定狀態會表現出對稱性破缺,不遵守具有對稱性的相關物理定律。例如晶體物質不具備連續平移對稱性,鐵磁性物質不具備旋轉對稱性,而處於基態的BCS超導體不具備U(1) 旋轉對稱性。 依據量子場論中的戈德斯通定理,在連續對稱性破缺的系統中會存在戈德斯通玻色子這種能量無限小的激發。例如,晶體中會存在用來表述量子化晶格振動的聲子。 相變 主條目:相變 臨界現象與相變是現代凝聚態物理學的一個重要的研究課題。臨界現象是物質在臨界點附近所展示出的特別現象。相變是指由於溫度這樣的外參數的變化導致物體的相發生的變化。量子相變是指在絕對溫度為零時,由於非溫度外參數的變化而發生的相變。在這裡,系統的相是指其哈密頓量所容許的各個不同基態。正在發生連續相變的系統會出現臨界行為,導致相關長度、相關時間、熱容及磁化率等等性質會因此發散。在平均場論中,連續相變可以使用金茲堡-朗道方程進行描述。然而一些重要的相變,比如莫特絕緣體與超流體間的相變,並不遵守金茲堡-朗道理論。強相關系統的相變是研究熱點之一。[1]
物理結構
凝聚態物理學是從微觀角度出發,研究由大量粒子(原子、分子、離子、電子)組成的凝聚態的結構、動力學過程及其與宏觀物理性質之間的聯繫的一門學科。凝聚態物理是以固體物理為基礎的外向延拓。凝聚態物理的研究對象除晶體、非晶體與准晶體等固相物質外還包括從稠密氣體、液體以及介於液態和固態之間的各類居間凝聚相,例如液氦、液晶、熔鹽、液態金屬、電解液、玻璃、凝膠等。經過半個世紀的發展,已形成了比固體物理學更廣泛更深入的理論體系。特別是八十年代以來,凝聚態物理學取得了巨大進展,研究對象日益擴展,更為複雜。一方面傳統的固體物理各個分支如金屬物理、半導體物理、 磁學、低溫物理和電介質物理等的研究更深入,各分支之間的聯繫更趨密切;另一方面許 多新的分支不斷湧現,如強關聯電子體系物理學、無序體系物理學、准晶物理學、介觀物 理與團簇物理等。從而使凝聚態物理學成為當前物理學中最重要的分支學科之一,從事凝聚態研究的人數在物理學家中首屈一指,每年發表的論文數在物理學的各個分支中居領先位置。凝聚態物理學正處在枝繁葉茂的興旺時期。並且,由於凝聚態物理的基礎性研 究往往與實際的技術應用有着緊密的聯繫,凝聚態物理學的成果是一系列新技術、新材料和新器件,在當今世界的高新科技領域起着關鍵性的不可替代的作用。二十世紀八十年代後凝聚態物理學的研究成果、研究方法和技術日益向相鄰學科滲透、擴展,有力的促進了諸如化學、物理、生物物理和地球物理等交叉學科的發展。液體和固體兩種凝聚態,其體積隨壓力和溫度的變化均較小,即等溫壓縮率和體膨脹係數都較小,故在通常的物理化學計算中常忽略其體積隨壓力和溫度的變化 。
學科研究範圍
研究凝聚態物質的原子之間的結構、電子態結構以及相關的各種物理性質。 研究領域包括固體物理、晶體物理、金屬物理、半導體物理、電介質物理、磁學、固體光學性質、低溫物理與超導電性、高壓物理、稀土物理、液晶物理、非晶物理、低維物理(包括薄膜物理、表面與界面物理和高分子物理)、液體物理、微結構物理(包括介觀物理與原子簇)、缺陷與相變物理、納米材料和准晶等。[2]
凝聚態物理學
凝聚態物理學專門研究物質凝聚相的物理性質。該領域的研究者力圖通過物理學定律來解釋凝聚相物質的行為。其中,量子力學、電磁學以及統計力學的相關定律對於該領域尤為重要。 固相以及液相是人們最為熟悉的凝聚相。除了這兩種相之外,凝聚相還包括一些特定的物質在低溫條件下的超導相、晶體與自旋有關的鐵磁相及反鐵磁相、超低溫原子系統的玻色-愛因斯坦凝聚相等等。對於凝聚態的研究包括通過實驗手段測定物質的各種性質,以及利用理論方法發展數學模型以深入理解這些物質的物理行為。 由於尚有大量的系統及現象亟待研究,凝聚態物理學成為了物理學最為活躍的領域之一。僅在美國,該領域的研究者就占到該國物理學者整體的近三分之一,凝聚態物理學部也是美國物理學會最大的部門。此外,該領域還與化學,材料科學以及納米技術等學科領域交叉,並與原子物理學以及生物物理學等物理學分支緊密相關。該領域研究者在理論研究中所採用的一些概念與方法也適用於粒子物理學及核物理學等領域。 晶體學、冶金學、彈性力學以及磁學等等起初是各自獨立的學科領域。這些學科在二十世紀四十年代被物理學家統合為固體物理學。時間進入二十世紀六十年代後,有關液體物理性質的研究也被納入其中,形成凝聚態物理學這一新學科。據物理學家菲利普·安德森所述,術語「凝聚態物理學」是他和福爾克爾·海涅首創。1967年,他們把位於卡文迪許實驗室的研究組名稱由「固體理論」改為「凝聚態理論」。二人覺得原來的名稱並沒有涵蓋液體及核物質等方面研究。但是,「凝聚態」這一術語此前已在歐洲學界出現,只是由他們普及而已。較為著名的例子是施普林格公司於1963年創建的期刊《凝聚態物理學》(英語:Physics of Condensed Matter)。二十世紀六、七十年代的資金環境以及各國政府採取的冷戰政策促使相關領域物理學家接納了「凝聚態物理學」這一術語。他們認為這一術語相對於「固體物理學」而言更為突出了固體、液體、等離子體以及其他複雜物質研究之間的共通性。這些研究與金屬和半導體在工業上的應用息息相關。貝爾實驗室是最早開展凝聚態物理學研究項目的研究機構之一。 「凝聚態」這一術語在更早的文獻中即已出現。例如,在1947年出版的由雅科夫·弗倫克爾撰寫的專著《液體動力學理論》(英語:Kinetic theory of liquids)的緒論中,他提出:「液體動力學理論日後也將發展為固體動力學理論的推廣與延伸。實際上,更為正確的做法或許是將液體與固體統歸為『凝聚態』。