求真百科欢迎当事人提供第一手真实资料,洗刷冤屈,终结网路霸凌。

隐形技术查看源代码讨论查看历史

事实揭露 揭密真相
跳转至: 导航搜索

来自 孔夫子旧书网 的图片

隐形技术是中国的一个科技名词。

汉字是世界上独一无二的方块字[1],是世界上最典雅、最俊美的文字。四角方方,大气承当。四平八稳,神州永昌。她讲究字体的间架结构,平衡布局。也讲求字形的沉稳厚重,大气端庄。横要平竖则直,切不可头重脚轻根底轻飘[2]

名词解释

隐形技术(stealth technology)俗称隐身技术,准确的术语应该是“低可探测技术”(low observable technology)。即通过研究利用各种不同的技术手段来改变己方目标的可探测性信息特征。

隐形技术是传统伪装技术的一种应用和延伸,它的出现,使伪装技术由防御性走向了进攻,由消极被动变成了积极主动,增强部队的生存能力,提高对敌人的威胁力。

探索原理

等离子体

实验证明,用等离子气体层包围诸如飞机、舰船、卫星等的表面,当雷达波碰到这层特殊气体时,由于等离子体层对雷达波有特殊的吸收和折射特性,使反射回雷达接收机的能量很少。例如,应用等离体技术可使一个13厘米长的微波反射器的雷达平均截面在4~14吉赫频率范围内平均减小20分贝,即雷达获取的回波能量减少到原来的1%。美国休斯实验室已进行了这方面的实验。

仿生技术

试验证明,海鸥虽与燕八哥的形体大小相近,但海鸥的雷达反射截面比燕八哥的大200倍。蜜蜂的体积小于麻雀,但它的雷达反射截面反而比麻雀大16倍。有关科学家们正在研究这些现象,试图采用仿生技术,寻求新的隐身技术。

微波传播指示

这种技术是利用计算机预测雷达波在大气中的传播情况。大气层的变化(如湿度、温度等的变化)能使雷达波的作用距离发生变化,使雷达覆盖范围产生“空隙”(即盲区),同时雷达波在大气里传播时要形成“传播波道”,其能量集中于“波道内”,“波道”之外几乎没有能量。如果突防兵器在雷达覆盖区的“空隙”内或“波道”外通过,就可避开敌方雷达的探测而顺利突防。

新型材料

隐形材料是隐身技术发展的关键。世界军事大国正在开发以下几种新型隐形材料:

手性材料

(chiralmaterial)。手性是指一种物体与其镜像不存在几何对称性且不能通过任何操作使物体与镜像相重合的现象。研究表明,具有手性特性的材料,能够减少入射电磁波的反射并能吸收电磁波。用于微波波段的手性材料都是人造的。采用手性材料的结构与微波相互作用的研究始于50年代,到80年代,有关手性材料对微波的吸收、反射特性的研究才受到一些研究部门的重视。研究的雷达吸波型手性材料,是在基体材料中掺杂手性结构物质形成的手性复合材料。

纳米隐形材料

近几年来,对纳米材料的研究不断深入,证明纳米材料具有极好的吸波特性,因而引起研究人员的极大兴趣。美、法、德、日、俄等国家把纳米材料作为新一代隐身材料进行探索和研究。

导电高聚物材料

这种材料是近几年才发展起来的,由于其结构多样化、高度低和独特的物理、化学特性,因而引起科学界的广泛重视。将导电高聚物与无机磁损耗物质或超微粒子复合,可望发展成为一种新型的轻质宽频带微波吸收材料。

多晶铁纤维吸收剂

欧洲伽玛(GAMMA)公司研制出一种新型的雷达吸波涂层,系采用多晶铁纤维作为吸收剂。这是一种轻质的磁性雷达吸收剂,可在很宽的频带内实现高吸收效果,且重量减轻40%~60%,克服了大多数磁性吸收剂所存在的过重的缺点。

智能型隐形材料

智能型隐形材料和结构是80年代逐渐发展起来的一项高新技术,它是一种具有感知功能、信息处理功能、自我指令并对信号作出最佳响应功能的材料和结构,为利用智能型材料实现隐形功能提供了可能性。

隐形技术正向着综合运用、权衡隐形性能和其他性能、扩展频率范围和应用范围、降低成本等方向发展。

超材料

隐形技术中最大有可为的新进展或许是一种叫做“超材料”的奇异材料,有朝一日它也许真的能让物体隐形。具有讽刺意味的是,超材料曾被认为是不可能存在的,因为它违反了光学定律。然而,2006年,北卡罗来纳州的杜克大学(Duke University)和伦敦帝国理工学院(Imperial College)的研究者成功挑战传统概念,使用超材料成功让一个物体在微波射线下在2维平面上隐形。我们有史以来头一次拥有了能使普通物体隐形的方案(五角大楼的国防高级研究计划署[The Pentagon’s Defense Advanced Research Project Agency,DARPA]资助了这一研究)。2010年,来自德国卡尔斯鲁厄理工学院(Karlsruher Institut für Technologie ,KIT) 和伦敦帝国理工学院(Imperial College)的研究者成功让金膜块在1.4到2.7微米波下在3维空间中成功隐形,离在可见光(可见光波长0.4~0.7微米)下达到隐形又向前推进了一步。

参考文献