轮换对称法查看源代码讨论查看历史
轮换对称法 |
名 称:轮换对称法
作 用:用来分解轮换对称式的因式分解方法 |
用法
当题目为一个轮换对称式时,可用轮换对称法进行分解。(轮换对称式:交换这些式子中的任意两个字母,式子不变,另外,两个轮换对称式的和、差、积、商仍然是轮换对称式。)
解题步骤
(1)试根
把下列5个等式分别带入原式,找出令原式等于0的那个等式。
1、 x=0
2、 x=y
3、 x=-y
4、 x=y+z
5、 x=-y-z
(2)轮换
1、若x=0使原式=0 原式必有因式xyz
2、若x=y使原式=0 原式必有因式(x-y)(y-z)(z-x)
3、若x=-y使原式=0 原式必有因式(x+y)(y+z)(z+x)
4、若x=y+z使原式=0 原式必有因式(x-y-z)(y-z-x)(z-x-y)
5、若x=-y-z使原式=0 原式必有因式(x+y+z)
(3)对比次数
用原式的次数减去必有因式的次数,然后再乘上差的次数的对应的式子。(差几次添几次)
须添上的轮换对称式:
1次:x+y+z
2次:x²+y²+z²、xy+yz+zx
3次:x³+y³+z³、x²y+y²z+z²x、xy²+yz²+zx²、xyz
(4)根据次数待定系数
在需要乘上的式子前加上字母,待定系数。
(5)算出待定的系数
用特值法及恒等式性质算出待定的系数。
(6)得出答案
进行检验,写出答案。
例题
分解因式:x²(y-z)³ +y²(z-x)³ +z²(x-y)³
解: x=y
原式=0
必有因式(x-y)(y-z)(z-x)
原式为五次式,(x-y)(y-z)(z-x)为三次式,则需要补上二次式。
设补上a(x²+y²+z²)+b(xy+yz+zx)
原式=(x-y)(y-z)(z-x)[a(x²+y²+z²)+b(xy+yz+zx)]
特值法:
令x=1 y=2 z=3
x²(y-z)³ +y²(z-x)³ +z²(x-y)³=(x-y)(y-z)(z-x)[a(x²+y²+z²)+b(xy+yz+zx)]
-1+32-9=(-1)·(-1)·2·(14a+11b)
22=28a+22b
14a+11b=11
令x=3 y=2 z=4
x²(y-z)³ +y²(z-x)³ +z²(x-y)³=(x-y)(y-z)(z-x)[a(x²+y²+z²)+b(xy+yz+zx)]
-72+4+16=1·(-2)·1·(29a+26b)
-52=-58a-52b
29a+26b=26
14a+11b=11
29a+26b=26
解得a=0
b=1
原式=(x-y)(y-z)(z-x)(xy+yz+zx)
参考来源
参考资料
- ↑ 因式分解轮换对称法是什么?,360问答 , 2013年2月28日