求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

烯烴檢視原始碼討論檢視歷史

事實揭露 揭密真相
前往: 導覽搜尋
烯烴

烯烴( Olefins ),是指含有C=C鍵(碳-碳雙鍵)(烯鍵)的碳氫化合物。屬於不飽和烴,分為鏈烯烴與環烯烴。按含雙鍵的多少分別稱單烯烴、二烯烴等。雙鍵中有一根屬於能量較高的π鍵,不穩定,易斷裂,所以會發生加成反應。[1] 單鏈烯烴分子通式為CnH2n,常溫下C2-C4為氣體,是非極性分子,不溶或微溶於水。雙鍵基團是烯烴分子中的官能團,具有反應活性,可發生氫化、鹵化、水合、鹵氫化、次鹵酸化、硫酸酯化、環氧化、聚合等加成反應,還可氧化發生雙鍵的斷裂,生成羧酸等。

可由鹵代烷氫氧化鈉醇溶液反應製得,也可由醇失水或由鄰二鹵代烷與反應製得。小分子烯烴主要來自石油裂解氣。環烯烴在植物精油中存在較多,許多可用作香料。 烯類是有機合成中的重要基礎原料,用於制聚烯烴和合成橡膠[2]

命名

IUPAC名稱

根據IUPAC命名規則,為了給烯烴主鏈命名。英文命名將中綴-ane-換為-ene-。例如CH3-CH3 是ethane。因此

CH2=CH2的名字是ethene。中文命名是直接將"烷"變為"烯",例如CH3-CH3是乙烷,因此CH2=CH2的名字是乙烯。

在高級烯烴中,因為雙鍵位置不同而導致異構體的出現,我們運用下面的數字系統:

命名含有雙鍵的最長碳鏈為主鏈,使得雙鍵碳原子的數字儘可能最小。

用第一個雙鍵碳原子指出雙鍵的位置。

對照烷烴那樣命名取代烯烴或支鏈。

首先是給碳原子標號,按順序註明取代基團,雙鍵和主鏈的名字。

CH3CH2CH2CH2CH==CH2

6 5 4 3 2 1

1-己烯

Hex-1-ene

CH3

|

CH3CH2CHCH2CH==CH2

6 5 4 3 2 1

4-甲基-1-己烯

4-Methylhex-1-ene

CH3

|

CH3CH2CHCH2C==CH2

6 5 4 3 |2 1

CH2CH3

2-乙基-4-甲基-1-己烯

2-Ethyl-4-methylhex-1-ene

一般名稱

儘管IUPAC命名系統有很高的通用性和精確性,但是一些烯烴的一般名稱已經被廣泛接受。 例如:

(CH3)2C=CH2

IUPAC 名稱: 2-甲基丙烯

一般名稱: 異丁烯

物理性質

烯烴的物理性質可以與烷烴對比。物理狀態決定於分子質量。標況或常溫下,簡單的烯烴中,乙烯、丙烯和丁烯是氣體,含有5至18個碳原子的直鏈烯烴是液體,更高級的烯烴則是蠟狀固體。標況或常溫下,C2~C4烯烴為氣體;C5~C18為易揮發液體;C19以上固體。在正構烯烴中,隨着相對分子質量的增加,沸點升高。同碳數正構烯烴的沸點比帶支鏈的烯烴沸點高。相同碳架的烯烴,雙鍵由鏈端移向鏈中間,沸點,熔點都有所增加。

反式烯烴的沸點比順式烯烴的沸點低,而熔點高,這是因反式異構體極性小,對稱性好。與相應的烷烴相比,烯的沸點、折射率,水中溶解度,相對密度等都比烷的略小些。其密度比水小。

化學性質與反應

烯烴的化學性質比較穩定,但比烷烴活潑。考慮到烯烴中的碳-碳雙鍵比烷烴中的碳-碳單鍵強,所以大部分烯烴的反應都有雙鍵的斷開並形成兩個新的單鍵。

烯烴的特徵反應都發生在官能團C=C 和 C-H 上。

催化加氫反應

(CH2=CH2)+H2→(CH3-CH3)

烯烴與氫作用生成烷烴的反應稱為加氫反應,又稱氫化反應。

加氫反應的活化能很大,即使在加熱條件下也難發生,而在催化劑的作用下反應能順利進行,故稱催化加氫。

在有機化學中,加氫反應又稱還原反應。

這個反應有如下特點:

①.轉化率接近100%,產物容易純化,(實驗室中常用來合成小量的烷烴;烯烴能定量吸收氫,用這個反應測定分子中雙鍵的數目)。

②.加氫反應的催化劑多數是過渡金屬,常把這些催化劑粉浸漬在活性碳和氧化鋁顆粒上;不同催化劑,反應條件不一樣,有的常壓就能反應,有的需在壓力下進行。工業上常用多孔的骨架鎳(又稱Raney鎳)為催化劑。

③.加氫反應難易與烯烴的結構有關。一般情況下,雙鍵碳原子上取代基多的烯烴不容易進行加成反應。

④.一般情況下,加氫反應產物以順式產物為主,因此稱順式加氫。

⑤.催化劑的作用是改變反應途徑,降低反應活化能。一般認為加氫反應是H2和烯烴同時吸附到催化劑表面上,催化劑促進H2的 σ鍵斷裂,形成兩個M-H σ鍵,再與配位在金屬表面的烯烴反應。

⑥.加氫反應在工業上有重要應用。石油加工得到的粗汽油常用加氫的方法除去烯烴,得到加氫汽油,提高油品的質量。又如,常將不飽和脂肪酸酯氫化製備人工黃油,提高食用價值。

⑦.加氫反應是放熱反應,反應熱稱氫化焓,不同結構的烯烴氫化焓有差異。

親電加成反應

1.加鹵素反應

烯烴容易與鹵素髮生反應,是製備鄰二鹵代烷的主要方法:

CH2=CH2+X2→CH2X-CH2X

①.這個反應在室溫下就能迅速反應,實驗室用它鑑別烯烴的存在(溴的四氯化碳溶液是紅棕色,溴消耗後變成無色)。

②.不同的鹵素反應活性規律:

氟反應激烈,不易控制;碘是可逆反應,平衡偏向烯烴邊;常用的鹵素是Cl2和Br2,且反應活性Cl2>Br2。

③.烯烴與溴反應得到的是反式加成產物,產物是外消旋體。

2.加質子酸反應

烯烴能與質子酸進行加成反應:

CH2=CH2+HX→CH3-CH2X

特點:

1.不對稱烯烴加成規律

當烯烴是不對稱烯烴(雙鍵兩碳被不對稱取代)時, 酸的質子主要加到含氫較多的碳上,而負性離子加到含氫較少的碳原子上稱為馬爾科夫尼科夫經驗規則,也稱不對稱烯烴加成規律。烯烴不對稱性越大,不對稱加成規律越明顯。

2.烯烴的結構影響加成反應

烯烴加成反應的活性:

(CH3)2C=CH2 > CH3CH=CH2 > CH2=CH2

3.質子酸酸性的影響

酸性越強加成反應越快,鹵化氫與烯烴加成反應的活性:

HI > HBr > HCl

酸是弱酸如H2O和ROH,則需要強酸做催化劑。

烯烴與硫酸加成得硫酸氫酯,後者水解得到醇,這是一種間接合成醇的方法:

CH3CH=CH2+H2SO4→CH3-CH2-OSO3H

CH3-CH2-OSO3H+H2O-共熱→CH3CH2OH + H2SO4

3.加次鹵酸反應

烯烴與鹵素的水溶液反應生成β-鹵代醇:

CH2=CH2+HOX→CH2X-CH2OH

鹵素、質子酸,次鹵酸等都是親電試劑,烯烴的加成反應是親電加成反應。反應能進行,是因為烯烴大π鍵的電子易流動,在環境(試劑)的影響下偏到雙鍵的一個碳一邊。如果是丙烯這樣不對稱烯烴,由於烷基的供電性,使π鍵電子不均勻分布,靠近甲基的碳上有微量正電荷,離甲基遠的碳上帶有微量的負電荷 ,在外電場的存在下,進一步加劇正負電荷的分離,使親電試劑很容易與烯烴發生親電加成。

飽和烴中的碳原子不能與其他原子或原子團直接結合,只能發生取代反應。而不飽和烴中的碳原子能與其它原子或原子團直接結合,發生加成反應。

自由基加成反應

當有過氧化物(如H2O2,R-O-O-R等)存在,氫溴酸與丙烯或其他不對稱烯烴起加成反應時,反應取向是反馬爾科夫尼科夫規則的。此反應不是親電加成反應而是自由基加成反應。它經歷了鏈引發、鏈傳遞、鏈終止階段。

首先過氧化物如過氧化二苯甲酰,受熱時分解成苯酰氧自由基,或苯自由基,促進溴化氫分解為溴自由基,這是鏈引發階段。

溴自由基與不對稱烯烴加成後生成一個新的自由基,這個新自由基與另一分子HBr反應而生成一溴代烷和一個新的溴自由基,這是鏈傳遞階段。

在這個鏈傳遞階段中,溴自由基加成也有兩個取向,以生成穩定自由基為主要取向,所以,生成的產物(Ⅱ)與親電加成產物不同,即所謂反馬氏規則。

只有烯烴與溴化氫在有過氧化物存在下或光照下才生成反馬氏規則的產物。過氧化物的存在,對與HCl和HI的加成反應方式沒有影響。

為什麼其他鹵化氫與不對稱烯烴的加成在過氧化物存在下仍服從馬氏規則呢?這是因為H-Cl鍵的解離能(431kJ/mol)比H-Br鍵(364kJ/mol)的大,產生自由基Cl·比較困難;而H-I鍵雖然解離能(297kJ/mol)小,較易產生I·,但是I·的活潑性差,難與烯烴迅速加成,卻容易自相結合成碘分子(I2)。所以不對稱烯烴與HCl和HI加成時都沒有過氧化物效應,得到的加成產物仍服從馬氏規則。

加聚反應

加聚反應(Addition Polymerization):即加成聚合反應, 烯類單體經加成而聚合起來的反應。加聚反應無副產物。

合成來源

最常用的工業合成途徑是石油的裂解作用。

烯烴可以通過酒精的脫水合成。例如,乙醇脫水生成乙烯:

CH3CH2OH + H2SO4 → CH3CH2OSO3H + H2O

CH3CH2OSO3H→ H2C=CH2 + H2SO4

其他醇的消去反應都是Chugaev消去反應和Grico消去反應,產生烯烴。

高級α-烯烴的催化合成可以由乙烯和有機金屬化合物三乙烯基鋁在鎳,鈷和鉑催化的情況下實現。

烯烴可以由羰基化合物通過一系列反應合成,比如乙醛和酮。

和一個烷基鹵化物發生Wittig反應

和一個苯基碸發生Julia成烯反應(朱利亞烯烴合成)

和兩個不同的酮發生Barton-Kellogg反應

結合一個酮,Bamford-Stevens反應或者Shapiro反應

烯烴可以由乙烯基鹵化物結合生成。

烯烴可以由炔烴的選擇性還原合成。

烯烴可以由Diels-Alder反應或Ene反應重排製得。

烯烴可以由α-氯代碸通過Ramberg-Bäcklund反應合成。

發展狀況

中國烯烴年產能預計達到5600萬噸

12月3日,世界著名會計師事務所--德勤會計師事務所發布了,2012年第四季度《中國煤制烯烴行業報告》。

《報告》預計,到"十二五"末,中國烯烴年產能可達5600萬噸,甲醇制烯烴新項目的不確定性可能引起產能進一步擴大。綜合考慮新增產能和需求增長放緩的情況,未來幾年烯烴行業可能出現產能過剩。2015年之後,產能過剩可能加速。

煤制烯烴項目的營利水平受油價和煤價波動影響較大。按德勤財務模型,石油價格降到每桶80美元以下時,煤制烯烴項目可能虧損。

烯烴市場中長期難言樂觀

中科院大連化物所副所長、DMTO首席科學家劉中民透露:DMTO技術已經對外許可了18套,合計年產能超過1000萬噸。其中,寧波禾元化工有限公司60萬噸/年甲醇制烯烴 項目將於春節前後投產,陝煤化與三峽集團合作建設的67.9萬噸/年DMTO-Ⅱ工業化示範項目,以及延長中煤靖邊園區年產60萬噸/年DMTO、60萬噸/年聚丙烯、60萬噸/年聚乙烯大型煤氣油綜合利用項目均將於2014年建成投產。算上已經形成的176萬噸/年煤制烯烴產能,到2015年,我國甲醇制烯烴產能將達976萬噸。加上天津等地建設的3套合計165萬噸/年進口乙烷/丙烷制烯烴項目,屆時國內非石油路線烯烴產能將達1141萬噸。

烯烴

單烯烴 C2H4 C3H6 C4H8 C5H10 C6H12 C7H14 C8H16 二烯烴 C3H4 C4H6 C5H8 多烯烴 C6H8 環烯烴 C3H4 C4H6 C5H8 C6H10

化學名詞

阿累尼烏斯方程 氨 螯合劑 螯合物 螯合物 半反應 半微量分析 苯 比色分析 變異係數 標定 標準電極電勢 標準曲線 標準溶液 標準自由能變 表徵 查依采夫規則 產物 常規分析 常量分析 沉澱反應 陳化 臭氧 船型構象 醇 磁性 次序規則 催化 催化反應 催化劑 單分子親核取代反應 單分子消除反應 單色器 氮族元素 滴定 滴定度 滴定分析 滴定誤差 滴定終點 狄爾斯阿爾得反應 碘量法 電池電動勢 電負性 電荷數 電化學分析 電極電勢 電解 電解質 電離 電離能 電子 電子的波動性 電子構型 電子自旋 定量分析 定性分析 對映體 多電子原子 多相離子平衡 多原子分子 二氧化碳 反應的活化能  反應方向 反應機理 反應級數 反應歷程 反應熱 反應速率 反應速率 范德華方程 芳香性 芳香族化合物 放射性 非金屬 非晶體 非均相催化劑 菲舍爾投影式 費林試劑 分光光度法  分析化學 分子軌道 分子軌道理論 分子間力 分子間作用力 分子空間構型 酚酞 伏特電池 副反應係數 傅列德爾克拉夫茨反應 蓋斯定律 高錳酸鉀 高錳酸鉀  格利雅試劑 汞 共沉澱 共軛二烯烴 共軛雙鍵 共軛酸鹼對 共軛酸鹼對 共軛體系 共軛效應 共價鍵 共價鍵 共性 構象異構體 構象 構型 孤對電子 官能團 光源 硅的存在和製備 硅酸 硅酸鹽 軌道 軌道能量 軌道重疊 過程 過渡金屬 過濾 過失誤差 過氧化氫 過氧化物和超氧化物 過氧化物效應 耗氧量 合金 核磁共振 核化學 核聚變 核裂變 紅外光譜 紅移 互變異構現象 化合物 化學反應 化學反應的通式 化學方程式配平 化學分析 化學計量點 化學位移 化學平衡 化學需氧量  化學因數 還原 緩衝容量 緩衝溶液 緩衝溶液 活化能 活性中間體 霍夫曼規則 基準物質 極性分子 繼沉澱 加成反應 甲基橙 價層電子對互斥理論 價鍵理論 價鍵理論 檢測系統   鹼金屬 鹼土金屬 鍵長 鍵級 鍵角 鍵矩 鍵能 結構異構 解蔽 解離常數 金屬 金屬鍵 金屬晶體 金屬離子的水解 金屬指示劑 晶體結構 精密度 聚合物 均相催化劑 開鏈族化合物 凱庫勒結構式 坎尼扎羅反應 克萊門森還原 克萊森酯縮合反應 克萊森重排 鑭系元素 累積穩定常數 離去基團 離子的沉澱與分離 離子的選擇沉澱 離子方程式配平 離子晶體 離子偶極力 理想氣體狀態方程分壓 立體化學 立體異構 立體異構體 量子數 列·沙特列原理 磷酸 磷酸鹽 零水準 硫化物 盧卡斯試劑 鹵代烴 鹵仿反應 鹵化磷 鹵化物 鹵素 路易斯酸鹼 氯化物 麥克爾反應 酶 醚 摩爾吸光係數  能斯特方程 紐曼投影式 濃度 偶極矩 偶然誤差 泡林不相容原理 配離子的形成 配位化合物 配位數 配位數 配位體 配位原子 硼氫化反應 硼烷 偏差 硼族元素 平衡常數 親電加成 親電試劑 親電性 親核加成 親核取代反應 親核試劑 氫化物 氫鍵 氫氧化物 氫原子的波爾模型 傾瀉法  球密堆積 區元素 醛 熱力學第二定律 熱力學第一定律 熱與功 溶度積常數 溶解度 溶解氧 色譜分析 色散 熵 熵變 生成焓 石墨 試劑 鈰量法 手性分子 雙分子親核取代反應 雙分子消除反應 雙原子分子 水的離子積 水合氫離子 水合質子 水離解 順反異構 速率常數 酸和鹼 酸鹼 酸鹼的相對強度 酸鹼滴定法 酸鹼指示劑 酸鹼質子理論 酸效應係數 羧酸 羧酸衍生物 碳負離子 碳化物 碳水化合物 碳酸 碳酸鹽 碳正離子 碳族元素 鐵 同分異構體 同分異構現象 同離子效應 同位素 銅 酮 透光率 瓦爾登反轉 微量分析 位置異構體 物質的量 吸電子基 吸光率 吸熱與發熱過程 吸收池 烯丙基正離子 烯烴 稀有氣體 稀有氣體化合物 系統命名法 系統誤差 系統與環境 顯著性檢驗 線光譜 相 相對標準偏差 相轉移催化作用 消除反應 硝酸 校正曲線  鋅 興斯堡試驗 行 形態分析 休克爾規則 旋光性 鹽 掩蔽 氧化 氧化還原電對 氧化還原反應 氧化還原指示 氧化劑和還原劑 氧化數 氧化物 氧族元素 一氧化碳 儀器分析 乙醇 乙二胺四乙酸 乙醚 乙醛 乙炔 乙酸 乙烯 乙酰化劑 異構現象 銀鏡反應 銀量法 有機化學 有效核電荷 有效數字 右旋 誘導效應 元素的周期律 原電池 原子半徑 原子軌道 原子晶體 原子數 雜化 雜化軌道 雜化軌道 雜環化合物 在線分析 真實氣體 正態分布 脂肪族化合物 值 質量數 質子平衡 質子轉移反應 置信區間 置信水平 中心離子 仲裁分析 重鉻酸鉀 重鉻酸鉀 重鍵 重量分析法 周期表 狀態與狀態函數 準確度 灼燒 紫移 自發過程 總穩定常數 族 左旋

參考來源