浮点数查看源代码讨论查看历史
浮点数是中国的一个科技名词。
汉字是世界上最古老的文字之一[1],已有六千多年的历史。从仓颉造字的古老传说到公元前1000多年前甲骨文的发现,汉字有着深厚的历史底蕴。后来的演变经历了几千年的漫长历程,在形体上逐渐由图形变为笔画,象形[2]变为象征,复杂变为简单;在造字原则上从表形、表意到形声。
名词解释
浮点数,是属于有理数中某特定子集的数的数字表示,在计算机中用以近似表示任意某个实数。具体的说,这个实数由一个整数或定点数(即尾数)乘以某个基数(计算机中通常是2)的整数次幂得到,这种表示方法类似于基数为10的科学计数法。
浮点计算
浮点计算是指浮点数参与的运算,这种运算通常伴随着因为无法精确表示而进行的近似或舍入。
一个浮点数a由两个数m和e来表示:a = m × b^e。在任意一个这样的系统中,我们选择一个基数b(记数系统的基)和精度p(即使用多少位来存储)。m(即尾数)是形如±d.ddd...ddd的p位数(每一位是一个介于0到b-1之间的整数,包括0和b-1)。如果m的第一位是非0整数,m称作规格化的。有一些描述使用一个单独的符号位(s 代表+或者-)来表示正负,这样m必须是正的。e是指数。
实例
例如,一个指数范围为±4的4位十进制浮点数可以用来表示43210,4.321或0.0004321,但是没有足够的精度来表示432.123和43212.3(必须近似为432.1和43210)。当然,实际使用的位数通常远大于4。
特别数值
此外,浮点数表示法通常还包括一些特别的数值:+∞和−∞(正负无穷大)以及NaN('Not a Number')。无穷大用于数太大而无法表示的时候,NaN则指示非法操作或者无法定义的结果。
二进制表示
众所周知,计算机中的所有数据都是以二进制表示的,浮点数也不例外。然而浮点数的二进制表示法却不像定点数那么简单了。
参考文献
- ↑ 云端超市•第407期┃“说文解字,中国最古老的一种文字”——篆书研究 主讲人:倪文东,搜狐,2022-10-28
- ↑ 为什么中国人会发明象形文字?,搜狐,2020-10-06