求真百科欢迎当事人提供第一手真实资料,洗刷冤屈,终结网路霸凌。

张晓彤查看源代码讨论查看历史

事实揭露 揭密真相
跳转至: 导航搜索
张晓彤
北京科技大学顺德创新学院

张晓彤,男,北京科技大学顺德创新学院教授。

社会任职

IEEE/CCF高级会员。 2000年4月于北京科技大学博士毕业留校,从事教学和科研工作。从2002年起,历任北京科技大学计算机科学与技术系副主任、信息工程学院副院长、计算机与通信工程学院副院长、北京科技大学顺德研究生院院长等职。担任中国计算机学会普及工委委员,中国计算机学会普适计算专委员会委员等学术兼职业,中国人工智能学会智慧医疗专委会常委等学术兼职,全球异构计算标准联盟(HSA)成员,中国材料与试验团体标准(CSTM)委员会委员。

研究方向

计算机系统结构 无线传感器网络 芯片与集成电路设计人工智能与大数据技术 基因组学生物信息学 基于多计算平台的设计

学术成果

论文

[1] Wang R, Xu C, Wu H, Shi Y, Duan S, Zhang X*. Gaussian Condensation Filter Based on Cooperative Constrained Particle Flow[J]. IEEE Internet of Things Journal, 2023.

[2] Wang R, Xu C, Dong R, Luo Z, Zheng R, Zhang X*. A secured big-data sharing platform for materials genome engineering: State-of-the-art, challenges and architecture[J]. Future Generation Computer Systems, 2023, 142: 59-74.

[3] Gong H, Li M, Ji M, Zhang X*, et al. MINE is a method for detecting spatial density of regulatory chromatin interactions based on a MultI-modal NEtwork[J]. Cell Reports Methods, 2023: 100386.

[4] Wan J, Xu C, Chen W, Wang R, Zhang X*. Abrupt moving target tracking based on quantum enhanced particle filter[J]. ISA transactions, 2023.

[5] Wang X, Wang P, Zhang X*, et al. Efficient and robust Levenberg–Marquardt Algorithm based on damping parameters for parameter inversion in underground metal target detection[J]. Computers & Geosciences, 2023, 176: 105354.

[6] Gong H, Li M, Ji M, Zhang X*, et al. Calculating the spatial density of regulatory chromatin interactions using multi-modal datasets from the same cell line[J]. STAR protocols, 2023, 4(2): 102188.

[7] Liu S, Liu Y, Zhang X*, et al. Improving the Performance of Cold-Start Recommendation by Fusion of Attention Network and Meta-Learning[J]. Electronics, 2023, 12(2): 376.

[8] Gong H, Ma F, Zhang X, et al. A 3D Chromosome Structure Reconstruction method with High Resolution Hi-C Data using Nonlinear Dimensionality Reduction and Divide-and-conquer strategy[J]. IEEE Transactions on NanoBioscience, 2023.

[9] Gong H, Chen Z, Tang Y, Li M, Zhang S, Zhang X*, et al., Computational methods for identifying enhancer-promoter interactions[J]. Quantitative Biology, 2023.

[10] Xiu H., He J, Zhang X*, et al., HRC-mCNNs: A Hybrid Regression and Classification Multi-branch CNNs for Automatic Meter Reading with Smart Shell [J]. IEEE Internet of Things Journal, 2022, 9(24): 25752-25766.

[11] Gong H, He J, Zhang X*, et al. A repository for the publication and sharing of heterogeneous materials data[J]. Scientific Data, 2022, 9(1): 787.

[12] Gong H, Yang Y, Zhang X*, et al. CASPIAN: A method to identify chromatin topological associated domains based on spatial density cluster[J]. Computational and Structural Biotechnology Journal, 2022, 20: 4816-4824.

[13] Wang X, Wang P, Zhang X*, et al. Target electromagnetic detection method in underground environment: A review[J]. IEEE Sensors Journal, 2022, 22 (14).

[14] Liang T, Wang L, Shi S, Johh G, Zhang X*. TCX: a programmable tensor processor[C]//2022 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2022: 1023-1028.

[15] Gong H, Yang Y, Zhang X*, et al. NeRV-3D-DC: A Nonlinear Dimensionality Reduction Visualization Method for 3D Chromosome Structure Reconstruction with High Resolution Hi-C Data[C]//2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2022: 422-429.

[16] Liu, S., Su, Y., Yin, H., …, Zhang X*, An infrastructure with user-centered presentation data model for integrated management of materials data and services[J]. npj Comput Mater, 2021, 7(1): 88 .

[17] Liang T, Glossner J, Wang L, Shi, Shaobo, Zhang X*. Pruning and Quantization for Deep Neural Network Acceleration: A Survey[J]. Neurocomputing, 2021, 461: 370-403.

[18] Gong H, Yang Y, Zhang S, Zhang X*,et al. Application of Hi-C and other omics data analysis in human cancer and cell differentiation research [J]. Computational and Structural Biotechnology Journal, 2021, 19: 2070-2083.

[19] Wan J, Xu C, Qiao Y, Zhang X*, et al. Error constraint enhanced particle filter using quantum particle swarm optimization[J]. IEEE Sensors Journal, 2021, 21(21): 24431-24439.

[20] Li Z, Qin J, Gong H, Zhang X*, et al. Enhancing the generalization of feature construction using genetic programming for imbalanced data with augmented non-overlap degree[C]//2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2021: 960-965.

[21] Zhang P, Liang T, Glossner J, Wang L, Shi S, Zhang X*. Dynamic Runtime Feature Map Pruning[C]. Chinese Conference on Pattern Recognition and Computer Vision (PRCV). Springer, Cham, 2021: 411-422.

[22] Ma F, Bai H, Zhang X*, et al. Generalised maximum complex correntropy-based DOA estimation in presence of impulsive noise [J]. Iet Radar Sonar and Navigation, 2020, 14(6): 793-802.

[23] Li Z, Zhang X*, Qin J, et al. A reformative teaching–learning-based optimization algorithm for solving numerical and engineering design optimization problems[J]. Soft Computing, 2020, 24(4).

[24] Xu C, He J, Zhang X*, et al. Geometrical kinematic modeling on human motion using method of multi-sensor fusion[J]. Information Fusion, 2018, 41: 243-254.

[25] Ma F, He J, Zhang X*. Robust Kalman Filter Algorithm Based on Generalized Correntropy for Ultra-Wideband Ranging in Industrial Environment[J]. IEEE Access, 2019, 7: 27490-27500.

[26] Wang P, Zhang X*, Liu Z, et al. FPGA implementation of adaptive time delay estimation for real‐time near‐field electromagnetic ranging[J]. International Journal of Circuit Theory and Applications, 2018, 46(11): 1940-1952.

[27] Xu C, He J, Zhang X*, et al. Recurrent transformation of prior knowledge based model for human motion recognition[J]. Computational intelligence and neuroscience, 2018, 2018.

[28] Xu C, He J, Zhang X*, et al. Geometrical kinematic modeling on human motion using method of multi-sensor fusion[J]. Information Fusion, 2018, 41: 243-254.

[29] Luo Y, Sun G, Zhang X*, et al. Adaptive time-delay estimation based on normalized maximum correntropy criterion for near-field electromagnetic ranging[J]. Computers & Electrical Engineering, 2018, 67: 404-414.

[30] 王鹏, 张晓彤*, 徐丽媛, 等. 基于自适应时延估计的室内近场测距算法[J]. 计算机学报, 2017, 40(8): 1902-1917.

[31] Xu C, He J, Zhang X*, et al. Toward near-ground localization: Modeling and applications for TOA ranging error[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(10): 5658-5662.

[32] Wang P, He J, Xu L, Zhang X*, et al. Characteristic modeling of TOA ranging error in rotating anchor-based relative positioning[J]. IEEE Sensors Journal, 2017, 17(23): 7945-7953.

[33] Ma J, Zhang X*, Huang Q, et al. Experimental study on the impact of soil conductivity on underground magneto-inductive channel[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1782-1785.

[34] Zhang X, Jiang J, Zhang X*, et al. A data transmission algorithm for distributed computing system based on maximum flow[J]. Cluster Computing, 2015, 18(3): 1157-1169.

[35] Xiahou Z, Zhang X. Adaptive Localization in Wireless Sensor Network through Bayesian Compressive Sensing. International Journal of Distributed Sensor Networks, 2015.

[36] Ma J, Zhang X*, Huang Q W. Near-field magnetic induction communication device for underground wireless communication networks[J]. Science China Information Sciences, 2014, 57(12): 1-11.

Yanhong Y, Xiaotong Z*, Qiong L, et al. Dynamic time division multiple access algorithm for industrial wireless hierarchical sensor networks[J]. China Communications, 2013, 10(5): 137-145.[1]

参考资料