求真百科欢迎当事人提供第一手真实资料,洗刷冤屈,终结网路霸凌。

亨利·庞加莱查看源代码讨论查看历史

事实揭露 揭密真相
跳转至: 导航搜索

亨利·庞加莱 (Jules Henri Poincaré)是法国数学家、天体力学家、数学物理学家、科学哲学家,1854年4月29日生于法国南锡,1912年7月17日卒于巴黎。庞加莱的研究涉及数论、代数学、几何学、拓扑学、天体力学、数学物理、多复变函数论、科学哲学等许多领域。

他被公认是19世纪后四分之一和二十世纪初的领袖数学家,是对于数学和它的应用具有全面知识的最后一个人。庞加莱在数学方面的杰出工作对20世纪和当今的数学造成极其深远的影响,他在天体力学方面的研究是牛顿之后的一座里程碑,他因为对电子理论的研究被公认为相对论的理论先驱。

主要成就

庞加莱的研究涉及数论、代数学、几何学、拓扑学等许多领域,最重要的工作是在函数论方面。他早期的主要工作是创立自守函数理论(1878)。他引进了富克斯群和克莱因群,构造了更一般的基本域。他利用后来以他的名字命名的级数构造了自守函数,并发现这种函数作为代数函数的单值化函数的效用。

1883年,庞加莱提出了一般的单值化定理(1907年,他和克贝相互独立地给出完全的证明)。同年,他进而研究一般解析函数论,研究了整函数的亏格及其与泰勒展开的系数或函数绝对值的增长率之间的关系,它同皮卡定理构成后来的整函数及亚纯函数理论发展的基础。他又是多复变函数论的先驱者之一。

庞加莱为了研究行星轨道和卫星轨道的稳定性问题,在1881~1886年发表的四篇关于微分方程所确定的积分曲线的论文中,创立了微分方程的定性理论。他研究了微分方程的解在四种类型的奇点(焦点、鞍点、结点、中心)附近的性态。他提出根据解对极限环(他求出的一种特殊的封闭曲线)的关系,可以判定解的稳定性。

1885年,瑞典国王奥斯卡二世设立“n体问题”奖,引起庞加莱研究天体力学问题的兴趣。他以关于当三体中的两个的质量比另一个小得多时的三体问题的周期解的论文获奖,还证明了这种限制性三体问题的周期解的数目同连续统的势一样大。 这以后,他又进行了大量天体力学研究,引进了渐进展开的方法,得出严格的天体力学计算技术。

庞加莱这一工作究竟给N体问题的解决以及动力系统的研究带来巨大而无比深刻的影响:

第一,庞加莱证明了对于N体问题在N大于二时,不存在统一的第一积分(uniform first integral)。也就是说即使是一般的三体问题,也不可能通过发现各种不变量最终降低问题的自由度, 把问题化简成更简单可以解出来的问题,这打破了当时很多人希望找到三体问题一般的显式解的幻想。在一百年后学习微分方程课的人大多在第二个星期就从老师那里知道绝大多数微分方程是没法找到定量的解的,但一般都能从定性理论中了解更多解的性质,甚至可以通过计算机“看到”解的形状行为。而在庞加莱的年代,大多数数学家更热衷于用代数或幂函数方法找到解,使用定性方法和几何方法来讨论微分方程就是起源于庞加莱对于N体问题的研究,这彻底改变人们研究微分方程的基本想法。

第二,为了研究N体问题,庞加莱发明了许多全新的数学工具。例如他完整地提出了不变积分(invariant integrals) 的概念,并且使用它证明了著名的回归定理(recurrence theorem)。另一个例子是他为了研究周期解的行为,引进了第一回归映象(first return map)的概念,在后来的动力系统理论中被称为庞加莱映象。还有象特征指数(characteristic expontents),解对参数的连续依赖性(continuous dependence of solutions with respect to parameters)等等。所有这些都成为了现代微分方程和动力系统理论中的基本概念。

第三,庞加莱通过研究所谓的渐近解(asymptotic solutions),同宿轨道 (homoclinic orbits) 和异宿轨道(hetroclinic orbits),发现即使在简单的三体问题中,在这样的同宿轨道或者异宿轨道附近,方程的解的状况会非常复杂,以至于对于给定的初始条件,几乎是没有办法预测当时间趋于无穷时,这个轨道的最终命运。事实上半个世纪后,后来的数学家们发现这种现象在一般动力系统中是常见的,他们把它叫做稳定流形(stable manifold)和不稳定流形(unstable manifold)正态相交(intersects transversally)所引起的同宿纠缠(homoclinic tangle),而这种对于轨道的长时间行为的不确定性,数学家和物理学家称之为混沌(chaos)。庞加莱的发现可以说是混沌理论的开创者。

庞加莱还开创了动力系统理论,1895年证明了“庞加莱回归定理”。他在天体力学方面的另一重要结果是,在引力作用下,转动流体的形状除了已知的旋转椭球体、不等轴椭球体和环状体外,还有三种庞加莱梨形体存在。

庞加莱对数学物理和偏微分方程也有贡献。他用括去法(sweepingout)证明了狄利克雷问题解的存在性,这一方法后来促使位势论有新发展。他还研究拉普拉斯算子的特征值问题,给出了特征值和特征函数存在性的严格证明。他在积分方程中引进复参数方法,促进了

弗雷德霍姆理论的发展。 庞加莱对现代数学最重要的影响是创立组合拓扑学。

1892年他发表了第一篇论文,1895~1904年,他在六篇论文中建立了组合拓扑学。他还引进贝蒂数、挠系数和基本群等重要概念,创造流形的三角剖分、单纯复合形、重心重分、对偶复合形、复合形的关联系数矩阵等工具,借助它们推广欧拉多面体定理成为欧拉—庞加莱公式,并证明流形的同调对偶定理。

庞加莱的思想预示了德·拉姆定理和霍奇理论。他还提出庞加莱猜想,在“庞加莱的最后定理”中,他把限制性三体问题的周期解的存在问题,归结为满足某种条件的平面连续变换不动点的存在问题。

庞加莱在数论和代数学方面的工作不多,但很有影响。他的《有理数域上的代数几何学》一书开创了丢番图方程的有理解的研究。他定义了曲线的秩数,成为丢番图几何的重要研究对象。他在代数学中引进群代数并证明其分解定理。第一次引进代数中的左理想和右理想的概念。证明了李代数第三基本定理及坎贝尔—豪斯多夫公式。还引进李代数的包络代数,并对其基加以描述,证明了庞加莱—伯克霍夫—维特定理。

庞加莱对经典物理学有深入而广泛的研究,对狭义相对论的创立有贡献。早于爱因斯坦,庞加莱在1897年发表了一篇文章“The Relativity of Space”〈空间的相对性〉,其中已有狭义相对论的影子。

1898年,庞加莱又发表《时间的测量》一文,提出了光速不变性假设。

1902年,庞加莱阐明了相对性原理。

1904年,庞加莱将洛伦兹给出的两个惯性参照系之间的坐标变换关系命名为‘洛伦兹变换’。 再后来,1905年6月,庞加莱先于爱因斯坦发表了相关论文:《论电子动力学》。 [2] 他从1899年开始研究电子理论,首先认识到洛伦茨变换构成群(1904年),第二年爱因斯坦在创立狭义相对论的论文中也得出相同结果。

庞加莱的哲学著作《科学与假设》、《科学的价值》、《科学与方法》也有着重大的影响。他是约定主义哲学的代表人物,认为科学公理是方便的定义或约定,可以在一切可能的约定中进行选择,但需以实验事实为依据,避开一切矛盾。在数学上,他不同意罗素、希尔伯特的观点,反对无穷集合的概念,赞成潜在的无穷,认为数学最基本的直观概念是自然数,反对把自然数归结为集合论。这使他成为直觉主义的先驱者之一。

1905年,匈牙利科学院颁发一项奖金为10000金克朗的鲍尔约奖。这个奖是要奖给在过去25年为数学发展做出过最大贡献的数学家。由于庞加莱从1879年就开始从事数学研究,并在数学的几乎整个领域都做出了杰出贡献,因而此项奖又非他莫属。

庞加莱定理 关于力学体系运动可逆性(或可复性)的定理。因由J.-H.庞加莱证明,故名。它指出,力学体系经过足够长的时间后总可以回复到初始状态附近。

1872年玻耳兹曼在研究实际热力学过程的不可逆性即热力学第二定律的微观本质时,曾根据非平衡态的分布函数f(r,v,t)定义了一个函数H,并证明在孤立系统以非平衡态趋于平衡态的过程中,H随时间单调下降,在平衡态达到最小值,这就是H定理。玻耳兹曼认为,H函数与熵对应,H的减少与熵的增大对应 ,H定理为热力学第二定律提供了统计解释。但是庞加莱定理似乎与H定理相矛盾。根据庞加莱定理,当H函数随时间单调地减少之后,只要经过足够长的时间,总可以重新增大,回复到初始的数值。对此,玻耳兹曼的回答是,H定理具有统计性质,即非平衡态总是以绝对优势的概率趋于平衡态,逆过程并非完全不可能,只是概率极其微小。

庞加莱猜想 主条目:庞加莱猜想

1904年,庞加莱在一篇论文中提出了一个看似很简单的拓扑学的猜想:在一个三维空间中,假如每一条封闭的曲线都能收缩到一点,那么这个空间一定是一个三维的圆球。但1905年发现其中的错误,修改为:“任何与n维球面同伦的n维封闭流形必定同胚于n维球面。”后来这个猜想被推广至三维以上空间,被称为“高维庞加莱猜想”。