開啟主選單

求真百科

諾伯特·維納Norbert Wiener)(1894年11月26日—1964年3月18日),美國應用數學家,控制論的創始人,在電子工程方面貢獻良多。他是隨機過程和噪聲過程的先驅,又提出了「控制論」的一詞。

諾伯特·維納
原文名 Norbert Wiener
出生 (1894-11-26)1894年11月26日
美國哥倫比亞
逝世 1964年3月18日(1964-03-18)(69歲)
別名 維納
職業 數學家
知名於 控制論的創始人
知名作品控制論
維納選集
維納數學論文集

目錄

個人簡介

維納的全名是諾伯特·維納(NorbertWiener,1894-1964)是美國數學家,控制論的創始人。維納1894年11月26日生於密蘇里州的哥倫比亞,1964年3月18日卒於斯德哥爾摩。維納在其50年的科學生涯中,先後涉足哲學、數學、物理學和工程學,最後轉向生物學,在各個領域中都取得了豐碩成果,稱得上是恩格斯頌揚過的、本世紀多才多藝和學識淵博的科學巨人。他一生髮表論文240多篇,著作14本。他的主要著作有《控制論》(1948)、《維納選集》(1964)和《維納數學論文集》(1980)。維納還有兩本自傳《昔日神童》和《我是一個數學家》。

諾伯特·維納 - 簡述

維納是美國數學家,控制論的創始人。維納1894年11月26日生於密蘇里州的哥倫比亞,1964年3月18日卒於斯德哥爾摩。 維納的父親列奧?維納是語言學家,又有很高的數學天賦。他出生於俄國,智力早熟,13歲就會好幾種語言;他朝氣蓬勃,富於冒險精神,18歲那年單獨一個漂洋過海,移居美國;他刻苦自學,憑掌握40多種語言的才能,成為哈佛大學斯拉夫語教授。這位才氣橫溢、不畏艱難而又性情急躁的人決心要使兒子在學術上超人一等。

維納認為他父親是天生的學者,集德國人的思想、猶太人的智慧和美國人的精神於一身。從童年到青年,維納一直在他的薰陶下生活,並逐步成長為一個學者。

諾伯特·維納 - 昔日神童

幼受庭訓

維納是一個名符其實的神童。維納的父親列奧很早就發現了兒子的天賦,並堅信藉助於環境進行教育的重要性,他從一開始學習就實施的教育計劃,用一種多少無情的方式驅使他不尋常的兒子。

維納三歲半開始讀書,生物學和天文學的初級科學讀物就成了他在科學方面的啟蒙書籍。從此,他興致勃勃,愛不釋卷的埋首於五花八門的科學讀本。七歲時,開始深入物理學和生物學的領域,甚至超出了他父親的知識範圍。從達爾文的進化論、金斯利的《自然史》到夏爾科、雅內的精神病學著作,從儒勒·凡爾納的科學幻想小說到18、19世紀的文學名著等等,幾乎無所不讀。

維納懷有強烈的好奇心,而他父親卻以系統教育為座右銘,兩者正好相得益彰。維納自己學習科學,而他父親則用嚴厲的態度堅持以數學和語言學為核心的教學計劃。維納極好地經受了這種嚴格的訓練,他的數學長進顯著。

六歲那年,維納有一次被A乘B等於B乘A之類的運算法則迷住了。為了設法弄清楚,他畫了一個矩形,然後移轉90°,長變寬、寬變長,面積並沒變。維納的拉丁語、希臘語、德語和英語也變成一種印在記憶中的書庫,不論何時何處,都可以拿出來就用。在其他小男孩想當警察和火車司機的時候,維納就渴望當一名博物學家,立志獻身於科學了。

父母幾次設法送他到學校去受教育,但不尋常的智力和訓練使維納在學校里很難被安排。他的閱讀遠遠地走在書寫的前面,他刻苦地學習並掌握了初等數學,但仍需要扳着手指做算術。直到9歲時,才作為一名特殊的學生,進了艾爾中學,不滿12歲就畢業了。

通才教育

列奧很明智,決定送維納進塔夫茨學院數學系就讀,而不讓他冒參加哈佛大學緊張的入學考試的風險,並避免由於把一個神童送進哈佛,而過分惹起人們的注意。

在數學方面,維納已超過大學一年級學生的水平,沒有什麼課程能確切地適合他的要求。於是他一開始就直接攻讀伽羅瓦的方程論。列奧仍常和兒子討論高等數學問題。就數學和語言學來說,維納跨學科學習的慣例沒有變。在這兩方面,列奧依然是他的嚴師。

維納興趣廣泛,大學第一年,物理和化學給他的印象遠比數學深。他對實驗尤其興致勃勃,與鄰友—道做過許多電機工程的實驗。他曾試圖動手證實兩個物理學方面的想法。一是供無線電通訊用的電磁粉末檢波器,另一個設想是試製一種靜電變壓器。維納的這兩個想法都很出色。

第二年,維納又為哲學和心理學所吸引。他讀過的哲學著作大大超出了該課程的要求。斯賓諾莎和菜布尼茨是對他影響最大的兩位哲學家,前者崇高的倫理道德和後者的多才多藝,都使維納傾倒。他還貪婪地閱讀了詹姆士的哲學巨著,並通過父親的關係,認識了這位實用主義大師。

在同一年,維納又把興趣集中到生物學方面。生物學博物館和實驗室成了最吸引他的地方,動物飼養室的管理員成了他特別親密的朋友。維納不僅樂於採集生物標本,而且經常把大部分時間用在實驗室的圖書館,在那裡閱讀著名的生物學家貝特森等人的著作。

維納用三年時間讀完了大學課程,於1909年春畢業。之後便開始攻讀哈佛大學研究院生物學博士學位。維納改學生物,並不是因為他知道自己能夠幹這一行,而是因為他想幹這一行。從童年開始,他就渴望成為一名生物學家。但是,維納的實驗工作不幸失敗了。他動手能力差,缺乏從事細緻工作所必需的技巧和耐心,深度近視更增添了麻煩。

在父親的安排下,他轉到康奈爾大學去學哲學,第二年又回到哈佛,研讀數理邏輯,於18歲獲哈佛大學哲學博士學位。

維納在大學接受的跨學科教育,促使他的才能橫向發展,為將來在眾多領域之間,在各種交界面上進行大量的開發和移植,奠定了基礎。從數學到生物學再到哲學,實際上就是維納整個科學生涯所經歷的道路.

名師薰陶

在哈佛的最後一年,維納向學校申請了旅行獎學金並獲得了批准。他先後留學於英國劍橋大學和德國哥丁根大學,在羅素、哈代、希爾伯特等著名數學家指導下研究邏輯和數學。

羅素是維納的主要良師益友,維納跟他學習數理邏輯和科學與數學哲學,從這位大師身上得到許多深摯的教益。他的哲學課程和數學原理課,維納感到很新鮮,富有啟發性。羅素的講授清晰曉暢,猶如無與倫比的傑作,給了他深刻的印象。

羅素建議維納閱讀愛因斯坦1905年發表的三篇論文,學習盧瑟福的電子理論和波爾的學說。羅素對物理學中的重要發現有着敏銳的嗅覺,他的教導使維納牢牢記住,不僅數學是重要的。而且還需要有物理概念。

儘管維納當時的物理學基礎對於學習最新的電子理論有困難,但羅素還是鼓勵他去鑽研。維納以後選擇了把數學和物理、工程學結合起來的研究方向,與羅素的啟迪是分不開的。愛因斯坦的論文中有一篇是論述布朗運動的,正是在這個課題上,維納在隨後的10年內做出了重要的數學成果。

對於維納未來的數學家生涯,羅素的另一個重要影響是,他向維納提出,一個專攻數理邏輯和數學哲學的人最好能懂一些數學。因此,維納選讀了許多數學課程,接受了哈代等人的指導。哈代清晰、有趣和發人深思的講演,涉及了包括勒貝格積分在內的實變函數基礎和複變函數引論,給了維納深刻的啟示,並直接導致他早期生涯中的主要成就。維納稱哈代是他理想的導師和榜樣。

維納原計劃在劍橋讀完這一年,但第二學期羅素要去哈佛講學,他勸告維納去哥丁根大學,攻讀希爾伯特和蘭道等人的課程。

維納上了蘭道教授的一門群論課,並在希爾伯特的指導下研究了微分方程。希爾伯特代表着本世紀初期數學的偉大傳統,是維納所遇到的唯一真正樣樣精通的天才數學家。他視野廣闊,善於把非凡的抽象能力和對物理現實的實事求是的認識很好地結合起來。他成了維納所嚮往的數學家。

在哥丁根所受的教育使維納終生受益。從數學名師身上,他認識到科學力量和知識深度,第一次取得了集中和熱情地干工作的經驗,劍橋和哥丁根標誌着維納開始由一個神童而成長為青年數學家。

諾伯特·維納 - 現代大師

1913年,19歲的維納在《劍橋哲學學會會刊》上發表了一篇關於集合論的論文。這是一篇將關係的理論簡化為類的理論的論文,在數理邏輯的發展中占據有一席之地。維納從此步入學術生涯。同年,他以一篇有些懷疑論味道的哲學論文《至善》,獲得哈佛大學授予的鮑多因獎。在轉向函數分析領域之前,維納在邏輯和哲學方面共發表了15篇論文。

1918年,通過研讀一位病逝的數學博士格林遺留的數學著作,維納對現代數學有了進一步理解。他開始在數學領域尋找值得專心致力的問題。維納雖是神童,但是作為一個數學家,他卻姍姍來遲。

維納開始為函數分析所吸引,決心把自己的一生貢獻給它。1919年,辛辛那提大學的年輕數學家巴納特對他作了一次拜訪。維納請他推薦一個合適的研究課題。他叫維納注意函數空間中的積分問題。這一建議對維納以後的數學研究產生了重大影響。

同年夏天,由於哈佛大學數學系主任奧斯古德的推薦,維納到麻省理工學院數學系任教,並一直在該學院工作到退休。

1920年,維納首次參加國際數學家會議。大會前,應弗雷歇邀請,他倆共同工作了一段時間。維納試圖推廣弗雷歇的工作,提出了巴拿赫一維納空間理論。他意識到自己關於布朗運動所做的工作是一個很有希望的開端,因而精神更加振奮,胸襟更加開闊了。

1924年維納升任助理教授,1929年為副教授。由於在廣義調和分析和關於陶伯定理方面的傑出成就,1932年晉升為正教授。

1933年,維納由於有關陶伯定理的工作與莫爾斯分享了美國數學會五年一次的博赫爾獎。差不多同時,他當選為美國科學院院士。在他了解了這個高級科學官員組織的性質之後,感到十分厭煩,不久便辭去了自己的位置。

通常給予取得成功的美國數學家的榮譽之一,就是要求他為美國數學會《討論會叢書》寫一本書。1934年夏,維納應邀撰寫了《復域上的傅立葉變換》。不久,他當選為美國數學會副會長。只是因為他不喜歡擔任行政職務,才免於被選作會長。

30年代開始,維納關注布什研究的模擬計算機。1935~1936年,他應邀到中國作訪問教授。在清華大學與李郁榮合作,研究並設計出很好的電子濾波器,獲得了該項發明的專利權。維納把他在中國的這一年作為自己學術生涯中的一個特定的里程碑,即作為科學的一個剛滿師的工匠和在某種程度上成為這一行的一個獨當一面的師傅的分界點。

在第二次世界大戰期間,維納接受了一項與火力控制有關的研究工作。這問題促使他深入探索了用機器來模擬人腦的計算功能,建立預測理論並應用於防空火力控制系統的預測裝置。1948年,維納發表《控制論》,宣告了這門新興學科的誕生。這是他長期艱苦努力並與生理學家羅森勃呂特等人多方面合作的偉大科學成果。維納立即從聲譽有限的數學家一躍成為一個國際知名人士,此時他早已年過半百。此後,維納繼續為控制論的發展和運用作出了傑出的貢獻。

1959年,維納從麻省理工學院退休。1964年1月,他由於「在純粹數學和應用數學方面並且勇於深入到工程和生物科學中去的多種令人驚異的貢獻及在這些領域中具有深遠意義的開創性工作」榮獲美國總統授予的國家科學勳章。

維納是伽金漢基金會旅歐研究員,富布賴特研究員,英、德、法等國的數學會會員,但任過中國、印度、荷蘭等國的訪問教授。

諾伯特·維納 - 成果

維納在其50年的科學生涯中,先後涉足哲學、數學、物理學和工程學,最後轉向生物學,在各個領域中都取得了豐碩成果,稱得上是恩格斯頌揚過的、本世紀多才多藝和學識淵博的科學巨人。他一生髮表論文240多篇,著作14本。他的主要著作有《控制論》(1948)、 《維納選集》 (1964)和 《維納數學論文集》 (1980)。維納還有兩本自傳《昔日神童》和《我是一個數學家》。他的主要成果有如下八個方面:

  • 1、建立維納測度

維納是第一個從數學上深刻地研究布朗運動的數學家。1921年,他用函數空間的點來表示作布朗運動的粒子的路徑,並證明,所有這些路徑除了概率為O的集合外,都是連續但又不光滑即幾乎處處不可微的。他運用勒貝格積分計算了這些路徑上函數的平均值。1923年,維納第一次給出隨機函數的嚴格定義,證明可以是布朗運動的理論模型。維納從樣本路程的觀念出發,研究「路徑」的集合,引進維納測度,揭示了連續而不可微函數的物理特徵,故布朗運動又稱維納過程。

維納的工作對於概率是極富成效的。它不僅給老問題注入了新生命,更重要的是開闢了嶄新的研究領域,揭示了概率論和其他數學分支之間引人注目的聯繫。維納的這項研究可以說是現代概率論的開創性工作。現在把定義在連續函數空間的一種描述布朗運動的測度稱為維納測度,關於這個測度的積分稱為維納積分。後來,日本數學家伊藤清在此基礎上發展了隨機積分論。

  • 2、引進巴拿赫—維納空間

1920年,維納將法國數學家弗雷歇關於極限和微分的廣義理論推廣到矢量空間,並給出了一個完整的公理集合。維納的結果與幾個星期以後發表在波蘭數學期刊上的巴拿赫的論文不謀而合,廣義的程度也分毫不差。巴拿赫構想和發表他的理論比維納早幾個月,但兩者的獨立程度是一樣的。故這兩項工作一度被稱為巴拿赫一維納空間理論。維納在短時間裡繼續發表了有關這方面的成果,為馮諾依曼1927年提出希爾伯特空間以及希爾伯特空間中的算子的公理方法提供了基礎。

後來維納逐漸離開了這個領域,但他對泛函分析這一20世紀產生和蓬勃發展的新興數學分支所作出開拓性工作己載入數學史冊。

  • 3、闡述位勢理論

1923~1925年,維納對位勢理論作出基本的貢獻。對於給定連續邊值函數的狄利克雷問題,得出了確切的廣義群。對於一般的緊集定義容度概念,並給出著名的正則性判據。早先關於一個區域內部的電磁勢的概念認為,它應當同邊界上給出的那些值完全一致。

維納遵照他業已研究過的類似於廣義積分的概念,注意到一個區域內部的勢可以被看作是由邊界周圍的勢的線性組合決定,即使按照這個定義在接近邊界點時不能給出一個連續函數邊界。這是一個嶄新的概念,維納由此大大地擴展了位勢理論的許多概念,包括電荷和電容的概念。

這一成果的意義在於,新理論認為,一個內點的勢與邊界值的關係是一種廣義積分,而不是由一種將這些內部勢與邊界上的勢結合起來的極限過程。這就把原有關於邊界問題的觀點顛倒了過來。就象數學上曾經有過的多次觀點顛倒一樣,重新闡述位勢理論給多年來被一種過於因循守舊的論點弄得死氣沉沉的局面吹進了一股清新的空氣。

  • 4、發展調和分析

為了給亥維賽計算法建立一個紮實的邏輯基礎,維納走上了調和分析的新道路。1926年初他發表了這方面的第一篇論文,此後五年的工作以一篇廣義調和分析的長文而達到頂峰。維納從物理學借來函數作為調和分析的鑰匙,而後又把它同通訊理論聯繫起來,把寫成傅立葉變換。他獲得了現在所說的光譜分布狀態。為了證明其中一個關鍵性的公式,維納在哈代和李特爾伍德的陶伯定理中提出了一種強有力的高度獨創的方法,即非零絕對收斂傅立葉級數的著名的反轉定理。這是一個具有統一數學抽象意義的驚人例子。維納在這方面的成果後來成為巴拿赫代數理論的基礎,並由此導出諸如素數定理等結果。

  • 5、發現維納—霍普夫方法

1930年前後。維納與天文學家霍普夫合作,共同研究一類給定在半無窮區間上的帶差核的奇異積分方程。此類方程現在被稱為維納—維普夫方程。維納推廣了霍普夫關於輻射平衡態的研究,於1931年得出其求解方法。其基本思想是通過積分變換,將原方程化為一個泛函方程,然後再用函數因子分解的方法來求解,因此維納—霍普夫方法又稱因子分解法。它已成為研究各種數學物理問題的一種常用方法。

維納創造性地說明,維納—霍普夫方程最引人注目的應用表現在兩種進程間的分界是時間上的而非空間的,這正是在預測理論的某些方面可應用的非常適當的工具。他進一步指出,還有許多關於儀器研究的更一般的問題可以用這種作用於時間的技術來解決。40年代以後,這一方程的理論在解析函數邊值問題、調和分析和算子理論的基礎上得到了系統的發展,其應用也從輻射問題擴展到許多其他領域,如中子遷移、電磁波衍射、控制論、多體問題及入口理論等。

  • 6、提出維納濾波理論

在第二次世界大戰期間,為了解決防空火力控制和雷達噪聲濾波問題,維納綜合運用了他以前幾方面的工作,於1942年2月首先給出了從時間序列的過去數據推知未來的維納濾波公式,建立了在最少均方誤差準則下將時間序列外推進預測的維納濾波理論。

維納的這項工作為設計自動防空控制炮火等方面的預測問題提供了理論依據,並為評價一個通訊和控制系統加工信息的效率和質量從理論上開闢了一條途徑。它對自動化技術科學有重要的影響。維納在問題中引進統計因素並使用了自相關和互相關函數,事實證明這是極其重要的。維納濾波模型在50年代被推廣到僅在有限時間區間內進行觀測的平穩過程以及某些特殊的外平穩過程,其應用範圍也擴充到更多的領域,至今它仍是處理各種動態數據(如氣象、水文、地震勘探等)及預測未來的有力工具之一。

  • 7、開創維納信息論

維納是信息論的創始人之一。他從帶直流電流或者至少可看作直流電流的電路出發來研究信息論,獨立於申農,將統計方法引入通訊工程,奠定了信息論的理論基礎。維納把消息看作可測事件的時間序列,把通信看作統計問題,在數學上作為平穩隨機過程及其變換來研究。他闡明了信息定量化的原則和方法,類似地用「熵」定義了連續信號的信息量,提出了度量信息量的申農—維納公式:單位信息量就是對具有相等概念的二中擇一的事物作單一選擇時所傳遞出去的信息。

維納的這些開創性工作有力地推動了信息論的創立,並為信息論的應用開闢了廣闊的前景。信息論創立者申農說:「光榮應歸於維納教授」。

  • 8、創立控制論

維納對科學發展所作出的最大貢獻,是創立控制論。這是一門以數學為紐帶,把研究自動調節、通信工程、計算機和計算技術以及生物科學中的神經生理學和病理學等學科共同關心的共性問題聯繫起來而形成的邊緣學科。

1947年10月,維納寫出劃時代的著作《控制論》,1948年出版後,立即風行世界。維納的深刻思想引起了人們的極大重視。它揭示了機器中的通信和控制機能與人的神經、感覺機能的共同規律;為現代科學技術研究提供了嶄新的科學方法;它從多方面突破了傳統思想的束縛,有力地促進了現代科學思維方式和當代哲學觀念的一系列變革。

現在,控制論已有了許多重大發展,但維納用吉布斯統計力學處理某些數學模型的思想仍處於中心地位。他定義控制論為:「設有兩個狀態變量,其中一個是能由我們進行調節的,而另一個則不能控制。這時我們面臨的問題是如何根據那個不可控制變量從過去到現在的信息來適當地確定可以調節的變量的最優值,以實現對於我們最為合適、最有利的狀態。」[1]

文獻參考

  1. 維納搜狐網