物態
物態 |
中文名稱;物態 外文名稱;State of matter 概述;幾乎所有物質都有基本3態 分類;固態、液態、氣態和等離子態等 全稱;物質狀態 |
物態(state of matter),學名聚集態,是一般物質在一定的溫度和壓強條件下所處的相對穩定的狀態,通常是指固態、液態和氣態。物質的上述三種狀態是可以互相轉化的。譬如水(液態),冷的時候會結成冰(固態),加熱到較高溫度時,會變成蒸汽(氣態)。[1]
除了上述三種物態以外,有人增加了等離子態、超固態和玻色-愛因斯坦凝聚態。當氣體中分子運動更加劇烈,成為離子、電子的混合體時,稱為等離子態;當壓強超過百萬大氣壓時,固體的原子結構被破壞,原子的電子殼層被擠壓到原子核的範圍,這種狀態稱為超固態;有些原子氣體被冷卻到納開(10K)溫度時,被稱為氣體原子(玻色子)都進入能量最低的基態,稱為玻色–愛因斯坦凝聚態 。
目錄
基本概念
物態(物質狀態)是指一種物質出現不同的相。早期來說,物質狀態是以它的體積性質來分辨。在固態時,物質擁有固定的形狀和容量;而在液態時,物質維持固定的容量但形狀會隨容器的形狀而改變;氣態時,物質不論有沒有容量都會膨脹以進行擴散。科學家以分子之間的相互關係作分類。固態是指因分子之間因為相互的吸力因而只會在固定位置振動。 而在液體的時候,分子之間距離仍然比較近,分子之間仍有一定的吸引力,因此只能在有限的範圍中活動。至於在氣態,分子之間的距離較遠,因此分子之間的吸引力並不顯著,所以分子可以隨意活動。等離子態(Plasma),是在高溫之下出現的高度離化氣體。而由於相互之間的吸力是離子力,因而出現與氣體不同的性質,所以等離子態被認為是第四種物質狀態,是宇宙中普遍存在的一種物質的聚集狀態。假如有一種物質狀態不是由分子組成而是由不同力所組成,會形成一種新的物質狀態。例如:夸克-膠子漿等。
物態(物質狀態)也可用相的轉變來表達。相的轉變可以是結構上的轉變又或者是出現一些獨特的性質。根據這個定義,每一種相都可以其他的相中透過相的轉變分離出來。例如水數種固體的相。超導電性便是由相的轉變引伸出來,因此便有超導電性的狀態。同樣,液晶體狀態等都是用相的轉變所劃分出來並同時擁有不同的性質。
基本物態
固態
粒子(包括離子、原子或者分子)都是緊密排列。粒子之間有很強的吸力,所以只能在原位震動。因而令固體擁有穩定、固定形狀和固定容量的特性,只有因施力而切斷或打碎時才可改變它的形狀。在晶體固體中,粒子(包括原子、分子、和離子)都是以三維空間的結構排列,而同一種物質可以排列成不同形式晶體結構。例如鐵在912℃下是面心立方,912℃至1394℃之間便是體心立方。又例如冰,世上已知有關冰的晶體結構有15種,這15種的固體物質狀態分別存在於不同的溫度和壓力之下。在物質狀態的轉變過程中,固體會透過融化變成液體,相反液體會凝固成固體。如果由固體直接轉變為氣體,例如在大氣壓力下的CO2,稱之為升華,反之則是凝華。
嚴格地說,物理上的固態應當指"結晶態",也即各種晶體所具有的狀態。最常見的晶體是食鹽,由許多立方形晶體構成。還有許多顏色、形狀各異的規則晶體。物質在固態時的突出特徵是有一定的體積和幾何形狀,物理性質具有各向異性。有一定的熔點,熔化時溫度不變。
在固體中,分子或原子有規則地排列。每個分子或原子在各自固定的位置上振動。晶體的這種結構稱為空間點陣結構。
液態
在溫度和氣壓是常數的情況下,液體的容量是固定的。當固體加熱到熔點之上時,便會成為液體。內分子(內原子或者內離子)之間的力仍然不可忽略,但分子有足夠的能量,因而可以有相對運動,結構亦是流動的。液體的形狀是不定的,由容器的形狀來決定。一般情況下液體的容量會比它在固體時要大,水(H2O)是一個反例,因為水從0℃-4℃下密度上升並達到頂點。而物質以液體存在的最高溫度和最高壓力分別名為臨界溫度和臨界壓力。
液體有流動性,與固體不同,液體還有各向同性特點(不同方向上物理性質相同),因為物體由固態變成液態的時候,由於溫度的升高使得分子或原子運動劇烈,不可能再保持原來的固定位置,於是產生流動。這時分子或原子間的吸引力還比較大,使它們不至分散遠離,因此液體有一定的體積。在液體內部的小區域內仍存在類似晶體的結構--"類晶區"。流動性是"類晶區"彼此間可以移動形成的。
氣態
在氣態中,分子擁有足夠多的動能,因而內分子力的影響相對減少(對於理想氣體是0),分子之間的距離也較遠。氣體並沒有限定的形狀和容量,但是它會占據整個密封的容器。液體可以透過在常壓下加熱到沸點或者在常溫下加壓而轉變成氣體。當氣體溫度低過臨界溫度時,這種氣體稱為蒸氣,可以單獨透過加壓而變成液體。如果氣體的壓力等同液體的蒸氣壓,兩者便可達致平衡,固體也是如此。當一種氣體的溫度和氣壓分別超越自身的臨界壓力及臨界溫度時便成為超臨界流體,它擁有氣體的特性,同時是一種高密度的溶劑,因此而工業中有不少用途。例如超臨界二氧化碳可用透過超流體抽取法去抽取咖啡因,從而製造出脫咖啡因的咖啡。
液體加熱會變成氣態。這時分子或原子運動更劇烈,"類晶區"不復存在。由於分子或原子間的距離增大,它們之間的引力可以忽略,因此氣態主要表現為分子或原子各自的無規則運動,導致氣體特性有流動性,沒有固定的形狀和體積,容易壓縮;物理性質具有各向同性。
其他常溫狀態
液晶體
液晶是介於各向同性液體與晶體之間的一種物質狀態。某一物質處在液晶態時,分子排列的有序度介於理想晶體的長程有序和液體的長程無序之間。液晶的特點是同時具有流動性和光學各向異性。液晶的化學和物理性質極其豐富,隨科學技術的發展,對液晶的認識也在不斷深化 。
液晶擁有液體的流動性和固體有序排列的特徵。分子擁有液體的流動性,但它們(在一定範圍內)只可以指向同一個方向,而且不能夠自由扭動。部分的液晶在科技上有很大的用途,例如液晶顯示器。
液晶對外界因素(如熱、電、光、壓力等)的微小變化很敏感。正是這些特性使其在許多方面得到廣泛應用。液晶屬於有機化合物,迄今人工合成的液晶已達5000多種。
無定形體
無定形體(又名非晶狀體)擁有像液體一樣的不規則結構,但由於分子間的運動相對不自由,因此通常納入固體的類別。常見例子有玻璃、聚苯乙烯、合成橡膠或其他聚合物。很多無定形體當加熱至玻璃轉化溫度時便會軟化成液體。此時,分子是自由流動的。無定形體不存在長距離的整齊排列,但是在有限範圍內,氧原子(O)以正四面體的排列包圍硅(Si)原子。部分液體屬於非牛頓流體,黏度的大小受作用力和剪應力所影響。因此在某一個流動情況之下便變成無定形體。
非晶態也叫無定形或玻璃態,是一大類剛性固體。利用很高的冷卻速率,將傳統的玻璃工藝發展到金屬和合金,製成對應的非晶態材料,稱之為金屬玻璃或玻璃態金屬。非晶態材料的種類很多,硅土(SiO2),以及硅土和Al、Na、Mg、Ca等元素的氧化物的混合物構成最古老、最重要的無機玻璃,近20多年來,由於非晶態材料優異的物理、化學特性和廣泛的技術應用,使其得到了迅速的發展 。
例如普通玻璃不是處於固態(結晶態),而是非晶態。玻璃沒有固定的熔點,物理性質也是各向同性的。玻璃內部結構沒有空間點陣,與液態的結構類似。"類晶區"彼此不能移動,因此玻璃沒有流動性。嚴格地說,非晶態不屬於固體,因為固體專指晶體。非晶態是另一種物態。除普通玻璃外,常見的非晶態還有橡膠、石蠟、天然樹脂、瀝青和高分子塑料等。
相關視頻