半質數
数学中,两个素数的乘积所得的自然数我们称之为半素数(也叫双素数,二次殆素数[1] )。开始的几个半素数是4, 6, 9, 10, 14, 15, 21, 22, 25, 26, ... id=A001358它們包含1及自己在內合共有3或4個因數。
目录
性质
除了自己本身外,半素数没有其他合数因数。例如,1、2、13及26是半素数26的因数,其中只有26是合数。
对于非平方半素数n=pq(p\ne q),其欧拉函数的值varphi(n)(小于或等于n的正整数中与n互质的数的数目)可以用简单的公式表达:
- varphi(n)=(p-1)(q-1)=n-(p+q)+1.
这个公式是RSA加密演算法半素数应用的重要部分。对于一个平方半素数,该公式又会简化为:
- varphi(n)=p(p-1)=n-p.
应用
半素数在密码学和数论中非常有用,最显著的例子的是RSA加密演算法和隨機數發生器等公开密钥加密应用。这些应用的基本原理是,计算两素数相乘结果(一个半素数)的过程简单,而反过来整数分解大半素数则比较困难。简单的来说,虽然35很容易就可以被分解成5×7,但是要想分解很大的半素数就不是那么容易了。RSA加密演算法中有一個稱為RSA-2048的半素数,有2,048位元,十進位有617位,RSA曾經公開懸賞200,000美元,給予成功將RSA-2048因數分解的人,迄2007年活動終止,未有人挑戰成功領取懸賞。
1974年,阿雷西博信息通过无线电信号被发向星团。其由1679个二进制数字组成,这些数字的用意是让接收方将信息解析成位图图像。选择数字<math>1679=23\cdot 73</math>是因为其是一个半素数,只存在一种构成矩形图像的可能(up to 图像平面的旋转和反射)。
例子与种类
比100小的半素数有:
- 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95 A001358.
不是平方数的半素数被称为离散、特异或非平方半素数,包括:
- 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, ... A006881
半素数是<math>k=2</math>的<math>k</math>次殆素数(有且仅有<math>k</math>个质因数的数)。 但是有些数列将“半素数”解释为一种更加宽泛的数,即最多有两个质因数的数,包括:
- 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, ... A037143