曲线查看源代码讨论查看历史
曲线的普通定义就是在几何空间中的“弯曲了的线”。而直线是一种特殊的曲线,只不过它的曲率为零。在《解析几何》[1]中,曲线用一组连续函数的方程组来表示。
曲线和直线都是指欧几里得几何所定义的欧几里得空间中的相关概念。此外,还存在多种不为多数人所知的非欧几里得几何,其中的直线和曲线的定义和欧几里得几何的定义有很大差别,甚至不能类比。想深入学习数学的人切忌将不同几何空间中的同名概念相互混淆。
基本定义
按照经典的定义,从(a,b)到R3中的连续映射就是一条曲线,这相当于是说:
(1)R3中的曲线是一个一维空间的连续像,因此是一维的。
(2)R3中的曲线可以通过直线做各种扭曲得到。
(3)说参数的某个值,就是说曲线上的一个点,但是反过来不一定,因为我们可以考虑自交的曲线[2]。
微分几何就是利用微积分来研究几何的学科。为了能够应用微积分的知识,我们不能考虑一切曲线,甚至不能考虑连续曲线,因为连续不一定可微。这就要我们考虑可微曲线。但是可微曲线也是不太好的,因为可能存在某些曲线,在某点切线的方向不是确定的,这就使得我们无法从切线开始入手,这就需要我们来研究导数处处不为零的这一类曲线,我们称它们为正则曲线。 正则曲线才是经典曲线论的主要研究对象。
曲线:任何一根连续的线条都称为曲线。包括直线、折线、线段、圆弧等。曲线是1-2维的图形,参考《分数维空间》。处处转折的曲线一般具有无穷大的长度和零的面积,这时,曲线本身就是一个大于1小于2维的空间。微分几何学研究的主要对象之一。直观上,曲线可看成空间质点运动的轨迹。曲线的更严格的定义是区间α,b)到E3中的映射r:α,b)E3。有时也把这映射的像称为曲线。
具体地说,设Oxyz是欧氏空间E3中的笛卡儿直角坐标系,r为曲线C上点的向径,于是有。上式称为曲线C的参数方程,t称为曲线C的参数,并且按照参数增加的方向自然地确定了曲线C的正向。曲线论中常讨论正则曲线,即其三个坐标函数x(t),y(t),z(t)的导数均连续且对任意t不同时为零的曲线。对于正则曲线,总可取其弧长s作为参数,它称为自然参数或弧长参数。弧长参数s用 来定义,它表示曲线C从r(α)到r(t)之间的长度,以下还假定曲线C的坐标函数都具有三阶连续导数,即曲线是C3阶的。
视频
曲线 相关视频
参考文献
- ↑ 数学系课程中,《解析几何》到底有什么用?,知乎
- ↑ 曲线过某点的切线方程,数学教学网,2020-03-01