負實數
負實數一般指負數。負數(negative number),全稱負實數,是數學術語,像−3、−1.5、−1/2、−584等在正數前面加「−」號的數,叫做負數。0既不是正數,也不是負數。
負數與正數表示意義相反的量。[1]
負數用負號(Minus Sign,即相當於減號)「−」和一個正數標記,如−2,代表的就是2的相反數。於是,任何正數前加上負號便成了負數。一個負數是其絕對值的相反數。[2]在數軸線上,負數都在0的左側,最早記載負數的是中國古代的數學著作《九章算術》。在算籌中規定"正算赤,負算黑",就是用紅色算籌表示正數,黑色的表示負數。兩個負數比較大小,絕對值大的反而小。
目錄
由來
人們在生活中經常會遇到各種相反意義的量。比如,在記賬時有餘有虧;在計算糧倉存米時,有時要記進糧食,有時要記出糧食。為了方便,人們就考慮了相反意義的數來表示。於是人們引入了正負數這個概念,把余錢進糧食記為正,把虧錢、出糧食記為負。可見正負數是生產實踐中產生的。
據史料記載,早在兩千多年前,中國就有了正負數的概念,掌握了正負數的運算法則。人們計算的時候用一些小竹棍擺出各種數字來進行計算。比如,356擺成||| ,3056擺成等等。這些小竹棍叫做「算籌」,算籌也可以用骨頭和象牙來製作。
中國三國時期的學者劉徽在建立負數的概念上有重大貢獻。劉徽首先給出了正負數的定義,他說:「今兩算得失相反,要令正負以名之。」意思是說,在計算過程中遇到具有相反意義的量,要用正數和負數來區分它們。
劉徽第一次給出了正負區分正負數的方法。他說:「正算赤,負算黑;否則以斜正為異」意思是說,用紅色的小棍擺出的數表示正數,用黑色的小棍擺出的數表示負數;也可以用斜擺的小棍表示負數,用正擺的小棍表示正數。
中國古代著名的數學專著《九章算術》(成書於公元一世紀)中,最早提出了正負數加減法的法則:「正負數曰:同名相除,異名相益,正無入負之,負無入正之;其異名相除,同名相益,正無入正之,負無入負之。」這裡的「名」就是「號」,「除」就是「減」,「相益」、「相除」就是兩數的絕對值「相加」、「相減」,「無」就是「零」。
正負數的加減法則是:同符號兩數相減,等於其絕對值相減,異號兩數相減,等於其絕對值相加。零減正數得負數,零減負數得正數。異號兩數相加,等於其絕對值相減,同號兩數相加,等於其絕對值相加。零加正數等於正數,零加負數等於負數。」
這段關於正負數的運算法則的敘述是不完全正確的,負數的引入是中國數學家傑出的貢獻之一。
用不同顏色的數表示正負數的習慣,用紅色表示負數,報紙上登載某國經濟上出現赤字,表明支出大於收入,財政上入不敷出。
負數是正數的相反數。在實際生活中,正數和負數來表示意義相反的兩個量。夏天武漢氣溫高達42°C,你會想到武漢的確像火爐,冬天哈爾濱氣溫-32°C一個負號讓你感到北方冬天的寒冷。
在現今的中小學教材中,負數的引入,是通過算術運算的方法引入的:只需以一個較小的數減去一個較大的數,便可以得到一個負數。這種引入方法可以在某種特殊的問題情景中給出負數的直觀理解。而在古代數學中,負數常常是在代數方程的求解過程中產生的。對古代巴比倫的代數研究發現,巴比倫人在解方程中沒有提出負數根的概念,即不用或未能發現負數根的概念。3世紀的希臘學者丟番圖的著作中,也只給出了方程的正根。然而,在中國的傳統數學中,已較早形成負數和相關的運算法則。
除《九章算術》定義有關正負運算方法外,東漢末年劉烘(公元206年)、宋代楊輝(1261年)也論及了正負數加減法則,都與九章算術所說的完全一致。特別值得一提的是,元代朱世傑除了明確給出了正負數同號異號的加減法則外,還給出了關於正負數的乘除法則。負數在國外得到認識和被承認,較之中國要晚得多。在印度,數學家婆羅摩笈多於公元628年才認識負數可以是二次方程的根。而在歐洲14世紀最有成就的法國數學家丘凱把負數說成是荒謬的數。直到十七世紀荷蘭人日拉爾(1629年)才首先認識和使用負數解決幾何問題。
與中國古代數學家不同,西方數學家更多的是研究負數存在的合理性。16、17世紀歐洲大多數數學家不承認負數是數。帕斯卡認為從0減去4是純粹的胡說。帕斯卡的朋友阿潤德提出一個有趣的說法來反對負數,他說(-1):1=1:(-1),那麼較小的數與較大的數的比怎麼能等於較大的數與較小的數比呢?直到1712年,連萊布尼茲也承認這種說法合理。英國數學家瓦里士承認負數,同時認為負數小於零而大於無窮大(1655年)。他對此解釋到:因為a>0時,英國著名代數學家德·摩根 在1831年仍認為負數是虛構的。他用以下的例子說明這一點:「父親56歲,其子29歲。問何時父親年齡將是兒子的二倍?」他列方程56+x=2(29+x),並解得x=-2。他稱此解是荒唐的。當然,歐洲18世紀排斥負數的人已經不多了。隨着19世紀整數理論基礎的建立,負數在邏輯上的合理性才真正建立。
中國人很早就開始使用負數,著名的中國古代數學著作《九章算術》的「方程」一章,在世界數學史上首次正式引入負數及其加減運算法則,並給出名為「正負術」的算法.魏晉時期的數學家劉徽在其著作《九章算術注》中用不同顏色的算籌(小棍形狀的計數工具)分別表示正數和負數(紅色為正,黑色為負.橫為十,豎為個)
「正負術」是正負術加減法則。其中有一段話是「同名相除,異名相益,正無入負之,負無入正之。」其實他就是加減法則,以現代算式為例,可以將這段話解釋如下:
「同名相除」,即同號兩數相減時,括號前為被減數的符號,括號內為被減數的絕對值減去減數的絕對值。例如:
(+5)-(-3)=+(5+3)
(-5)-(-3)=-(5-3)
「異名相益」,即異號兩數相減時,括號前為被減數的符號,括號內為被減數的絕對值加上減數的絕對值。例如:
(+5)-(-3)=+(5+3)
(-5)-(+3)=-(5+3)
「正無入負之,負無入正之」,即0減正為負,0減負得正。例如:
0-(+3)=-3
0-(-3)=+3
史料證明:追溯到兩百多年前,中國人已經開始使用負數,並應用到生產和生活中。例如,在古代商業活動中,收入為正,支出為負;以盈餘為正,虧欠為負.在古代農業活動中,以增產為正,減產為負。中國人使用負數在世界上是首創。
基本信息
負數都比零小,則負數都比正數小。零既不是正數,也不是負數。則-a
負數中沒有最小的數,也沒有最大的數。
去除負數前的負號等於這個負數的絕對值。
如-2、-5.33、-45等:-2的絕對值為2,-5.33的絕對值為5.33,-45的絕對值為45等。
分數也可做負數,如:-2/5
負數的平方根用虛數單位「i」表示。(實數範圍內負數沒有平方根)
最大的負整數為:-1
沒有最小的負數。
例題
例題1
我們在小學學過自然數;一個物體也沒有,就用0來表示,測量和計算有時不能得到整數的結果,這就要用分數和小數表示。同學們還見過其他種類的數嗎?
有兩個溫度計,溫度計液面指在0以上第6刻度,它表示的溫度是6℃,那麼溫度計液面指在0以下第6刻度,這時的溫度如何表示呢?
提示:如果還用6℃來表示,那麼就無法區分是零上6℃還是零下6℃,因此我們就引入一種新數——負數。
參考答案:記作-6℃。
說明:我們為了區分零上6℃與零下6℃這一組具有相反意義的量,因而引入了負數的概念。
例題2
從中國地形圖上可以看到,有一座世界最高峰—珠穆朗瑪峰,圖上標着8844M;
還有一個吐魯番盆地,圖上標着-155M。你能說出它們的高度各是多少嗎?
提示:
中國地形圖上可以看到,上述兩處都標有它們的高度的數,圖上標的數表示的高度是相對海平面說的,通常稱為海拔高度。8844表示珠穆朗比海平面高8844米,-155表示吐魯番盆地比海平面低155米。
參考答案:珠穆朗瑪峰的高度是海拔8844米;吐魯番盆地的高度是海拔-155米。
說明:這個例子也說明了我們為了實際需要引入負數,是為了區分海平面以上與海平面以下高度,它們也表示具有相反意義的量。
應用
負數可以廣泛應用於溫度、樓層、海拔、水位、盈利、增產/減產、支出/收入、得分/扣分等等的這些方面中。現小學六年級學。(初一也有學)。
計算法則
+
負數1+負數2=-(負數1+負數2)=負數
負數+正數=符號取絕對值較大的加數的符號,數值取「用較大的絕對值減去較小的絕對值 」的所得值
-
負數1-負數2=負數1+(正數2)=負數1加上負數2的相反數,再按負數加正數的方法算
負數-正數=-(正數+負數)=負數 異號兩數相減,等於其絕對值相加
×
負數1×負數2=(負數1×負數2) =正數
負數×正數=-(正數×負數)=負數
÷
負數1÷負數2=(負數1÷負數2) =正數
負數÷正數=-(負數÷正數) =負數
總得來說,就是同號相除等於正數,異號相除等於負數。
注意事項
對於正數和負數的概念,不能簡單地理解為帶「+」的數是正數,帶「−」的數是負數,例如對於−a,當a是正數時,−a一定是負數;當a是0時,−a就是0;當a是負數時,−a就是一個正數了。