求真百科欢迎当事人提供第一手真实资料,洗刷冤屈,终结网路霸凌。

硫醇查看源代码讨论查看历史

事实揭露 揭密真相
跳转至: 导航搜索
硫醇

硫醇,有机化学中,将包含巯基官能团(-SH)的一类非芳香化合物称为硫醇。从结构上来说,可以看成普通醇中的氧被硫替换之后形成的。除甲硫醇在室温下为气体外,其他硫醇均为液体或固体。低级硫醇一般有难闻的气味,有毒。Thiol-30L 二级精馏聚硫醇巯基化合物,比常规PEMP硫醇更低气味。可应用于在光固化体系能够明显改善低能量固化条件的氧阻聚现象。氧的阻聚主要是由于体系中的自由基和氧气形成了过氧自由基,过氧自由基相对稳定导致链增长反应变缓慢,硫醇中的活泼氢可以和过氧自由基反应,硫醇被夺氢后形成新的自由基,继续参与加成反应。

硫醇可由卤代烷硫氢化钠起取代反应制得,可作药物、解毒剂橡胶硫化促进剂

分子结构

硫醇中,硫原子为不等性 sp 杂化态,两个单电子占据的 sp 杂化轨道分别与烃基碳和氢形成 σ 键,还有两对孤对电子占据另外的两个 sp 杂化轨道。由于硫的 3s 和 3p 轨道形成的杂化轨道比氧的 2s 和 2p 轨道形成的杂化轨道大,故 C-S 和 S-H 键分别比 C-O 和 O-H 键长。[1] 在甲硫醇中 C-S 和 S-H 键键长分别为 0.182 nm 和 0.134 nm,都比甲醇中的 C-O 和 O-H 键长大。∠CSH 则为 96°,小于 ∠COH。

硫的电负性比氧小,所以硫醇的偶极矩也比相应的醇小。

物理性质

除甲硫醇在室温下为气体外,其他硫醇均为液体或固体。硫醇分子间有偶极吸引力,但小于醇分子间的偶极吸引力,且硫醇分子间无明显的氢键作用,也无明显的缔合作用。因此,硫醇的沸点比分子量相近的烷烃高,比分子量相近的醇低,与分子量相近的硫醚相似。[2] 硫醇与水间不能很好地形成氢键,所以硫醇在水中的溶解度比相应的醇小得多。常温下,乙硫醇在水中的溶解度仅为 1.5g/100mL。

低级的硫醇有强烈且令人厌恶的气味,乙硫醇的臭味尤其明显,所以常用乙硫醇作为天然气中的警觉剂,用以警示天然气泄漏。不过随着分子量的增加,硫醇的臭味渐弱,九碳以上的硫醇则有令人愉快的气味。

化学性质

巯基是硫醇化学性质的主要体现。其中 S-H 键涉及硫较大的 3s/3p 组成的杂化轨道与氢较小的 1s 轨道成键,所以 S-H 键较弱,硫醇具有酸性。硫上还有孤对电子,所以巯基也可被氧化。

酸性

硫醇的酸性比相应的醇强,可溶于氢氧化钠的乙醇溶液中生成比较稳定的盐,通入二氧化碳又变回硫醇。硫醇可与一些重金属盐生成不溶于水的硫醇盐,两者软软相吸。许多重金属离子在体内的毒性即是因为其可与生物分子的巯基结合。另一方面,也可利用硫醇(如二巯基丙酸)通过形成不溶沉淀的方法将重金属离子从尿液排出,起到解毒作用。

强还原性

硫醇很容易被氧化。弱氧化剂(如空气、碘、氧化铁、二氧化锰等)即可将硫醇氧化为二硫化物。硫醇与二硫化物形成的氧还共轭对是生物体内的常见机制,如半胱氨酸-胱氨酸还氧对。生成的二硫化物中的二硫键在维持蛋白质空间结构方面有重要作用。

硫醇用强氧化剂(如高锰酸钾、硝酸、高碘酸)氧化,经过中间物次磺酸、亚磺酸,最终生成磺酸。此法可用于脂肪磺酸的制备。

对硫醇催化加氢,可实现脱硫,产生相应的烃。石油炼制中的加氢脱硫即是基于此反应。石油中有少量硫醇,硫醇的存在不仅会使汽油具有令人讨厌的气味,还会在燃烧时转变为有毒、腐蚀性的二氧化硫和三氧化硫。

与醇的相似性 此外,硫醇还可发生一些与醇相似的反应,例如与羧酸生成硫醇酯,与醛、酮生成缩硫醛酮。后一反应用于在有机合成中保护羰基或除去羰基,或实现羰基的极性转换。

实例与代表物

常见实例

甲硫醇 乙硫醇 乙二硫醇 1-丙硫醇 1,3-丙二硫醇 半胱氨酸 卡托普利 辅酶A 谷胱甘肽 折叠代表物 中文名称 乙硫醇 结构式 典型代表物-乙硫醇 典型代表物-乙硫醇

英文名称 ethyl mercaptan;ethanethiol

别名 硫氢乙烷;巯基乙烷 分子式 C2H6S;CH3CH2SH 性状 无色液体,有强烈的蒜气味 分子量 62.13 蒸汽压 53.32kPa/17.7℃ 密度 相对密度(水=1)0.84; 熔沸点 熔点 -147℃ 沸点36.2℃ 溶解度 溶解性微溶于水

溶于乙醇、乙醚等多数有机溶剂

危险性

危险标记 7(低闪点易燃液体)

主要用途用作粘合剂的稳定剂和化学合成的中间体

制取方法

硫醇可由卤代烷与硫氢化钠起取代反应制得,或将卤代烷与硫脲反应,然后将产物用碱液处理制得。醇与硫化氢进行高温催化反应,能大量生产廉价的乙硫醇和丁硫醇。 硫醇常用的合成方法有硫脲的烃化水解,烯烃与硫化氢加成,硫氢化钠(钾)的烃化,硫醇酯的水解,二硫化物还原,金属有机化合物与硫作用,磺酰氯还原等。

硫脲烃化水解的方法来制备硫醇,硫脲法制备硫醇的工艺简单,容易操作。该方法主要是分三步进行:①生成异硫脲盐;②加碱水解;③酸化生成硫醇。传统的硫脲烃化水解法多采用甲醇作溶剂,在第一步反应后直接蒸干甲醇进行水解等,这在单取代硫醇的制备中是可行的,但是对于三个取代基而言,一取代和二取代的硫脲盐同样可以溶于甲醇中,这样直接进入下一步反应的话,就会导致副产物二取代硫醇和一取代硫醇的生成,影响产率与纯度,用乙醇替代甲醇作溶剂。

实际应用

有些硫醇可作药物、解毒剂和橡胶硫化促进剂,也可用作合成杀菌剂的原料。例如,2-巯基苯并噻唑可作橡胶的硫化促进剂;2,3-二巯基丙醇可作砷中毒的解毒剂;6-巯基嘌呤可治癌。

环境影响

人体危害

侵入途径:吸入、食入、经皮吸收。

健康危害:本品主要作用于中枢神经系统。吸入低浓度蒸气时可引起头痛、恶心;较高浓度出现麻醉作用。高浓度可引起呼吸麻痹致死。中毒者可发生呕吐、腹泻,尿中出现蛋白、管型及血尿。

环境危害

急性毒性:LD50682mg/kg(大鼠经口);LC5011227mg/m4小时(大鼠吸入)。

危险特性:其蒸气与空气可形成爆炸性混合物。遇明火、高热极易燃烧爆炸。与氧化剂接触会猛烈反应。接触酸和酸雾产生有毒气体。与水、水蒸气反应放出有毒的或易燃的气体。与次氯酸钙、氢氧化钙发生剧烈反应。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。若遇高热,容器内压增大,有开裂和爆炸的危险。

燃烧(分解)产物:一氧化碳、二氧化碳、氧化硫。

前苏联车间空气中有害物质的最高容许浓度1mg/m。

监测方法

现场应急监测方法:便携式气相色谱法

实验室监测方法:

气相色谱法《空气中有害物质的测定方法》(第二版),杭士平编

对二甲胺基苯胺比色法《空气中有害物质的测定方法》(第二版),杭士平编

泄漏处理

人员处置

迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源。防止进入下水道、排洪沟等限制性空间。

防护措施

呼吸系统防护:空气中浓度超标时,应该佩戴自吸过滤式防毒面具(半面)。必要时,建议佩戴空气呼吸器。 眼睛防护:戴化学安全防护眼镜。 身体防护:穿防静电工作服。 手防护:戴橡胶手套。 其它:工作现场严禁吸烟。工作毕,淋浴更衣。注意个人清洁卫生。 急救措施

皮肤接触:脱去被污染的衣着,用肥皂水和清水彻底冲洗皮肤。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:饮足量温水,催吐,就医。 灭火方法:尽可能将容器从火场移至空旷处, 喷水保持火场容器冷却,直至灭火结束。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。灭火剂:抗溶性泡沫、干粉、二氧化碳、砂土。用水灭火无效。

污染物处理

小量泄漏:用活性炭或其它惰性材料吸收。也可以用大量水冲洗,洗水稀释后放入废水系统。 大量泄漏:构筑围堤或挖坑收容;用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 折叠废弃物处置 用焚烧法。焚烧炉排出的气体要经过碱溶液洗涤处理。

参考来源 =