自然数查看源代码讨论查看历史
自然数 | |
---|---|
自然数,用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4,……所表示的数。表示物体个数的数叫自然数,自然数由0开始,一个接一个,组成一个无穷的集体。
概述
自然数包括0。自然数就是比0大的整数。[1] 数学术语
自然数集是全体非负整数(在过去的教科书中,零一般被认为不是自然数,但21世纪的规定表明,0确实为自然数,而更正原因是为了方便简洁)组成的集合,常用 N 来表示。自然数有无穷多个。
【拼音】zì rán shù
严格定义
自然数不仅是表示量的程度的符号,同时也是表示这个量的有序规律的一种符号。就是说:自然数是能够表示同一属性事物的程度及其有序规律的一种符号,并具备表示事物属性、量的程度、有序规律这三种功能。摘自自然数原本数数论。[2]
自然数集N是指满足以下条件的集合:①N中有一个元素,记作0。②N中每一个元素都能在 N 中找到一个元素作为它的后继者。③ 0不是任何元素的后继者。④ 不同元素有不同的后继者。⑤(归纳公理)N的任一子集M,如果0∈M,并且只要x在M中就能推出x的后继者也在M中,那么M=N。
基数理论则把自然数定义为有限集的基数,这种理论提出,两个可以在元素之间建立一一对应关系的有限集具有共同的数量特征,这一特征叫做基数 。这样 ,所有单元素集{x},{y},{a},{b}等具有同一基数(用集合的形式表示) , 记作1 。类似,凡能与两个手指头建立一一对应的集合,它们的基数相同,记作2,等等 。自然数的加法 、乘法运算可以在序数或基数理论中给出定义,并且两种理论下的运算是一致的。
般概念
自然数是一切等价有限集合共同特征的标记。
注:自然数就是我们常说的正整数。整数包括自然数,所以自然数一定是整数,且一定是非负整数。
但相减和 自然数的基本要求相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不总是成立的。用以计量事物的件数或表示事物次序的数 。 即用数码,1,2,3,4,……所表示的数 。表示物体个数的数叫自然数,自然数一个接一个,组成一个无穷集体。自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数,也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。自然数是人们认识的所有数中最基本的一类,为了使数的系统有严密的逻辑基础,19世纪的数学家建立了自然数的两种等价的理论枣自然数的序数理论和基数理论,使自然数的概念、运算和有关性质得到严格的论述。
(序数理论是意大利数学家G.皮亚诺提出来的。他总结了自然数的性质,用公理法给出自然数的如下定义) 自然数集N是指满足以下条件的集合:①N中有一个元素,记作1。②N中每一个元素都能在 N 中找到一个元素作为它的后继者。③ 1是0的后继者。④0不是任何元素的后继者。 ⑤不同元素有不同的后继者。⑥(归纳公理)N的任一子集M,如果1∈M,并且只要x在M中就能推出x的后继者也在M中,那么M=N。
基数理论则把自然数定义为有限集的基数,这种理论提出,两个可以在元素之间建立一一对应关系的有限集具有共同的数量特征,这一特征叫做基数 。这样 ,所有单元素集{x},{y},{a},{b}等具有同一基数 , 记作1 。类似,凡能与两个手指头建立一一对应的集合,它们的基数相同,记作2,等等 。自然数的加法 、乘法运算可以在序数或基数理论中给出定义,并且两种理论下的运算是一致的。
自然数在日常生活中起了很大的作用,人们广泛使用自然数。自然数是人类历史上最早出现的数,自然数在计数和测量中有着广泛的应用。人们还常常用自然数来给事物标号或排序,如城市的公共汽车路线,门牌号码,邮政编码等。
自然数是整数(自然数包括正整数和零),但整数不全是自然数,例如:-1 -2 -3......是整数 而不是自然数。自然数是无限的。
全体非负整数组成的集合称为非负整数集,即自然数集。)
在数物体的时候,数出的1.2.3.4.5.6.7.8.9……叫自然数。自然数有数量、次序两层含义,分为基数、序数。 基本单位:1 计数单位:个、十、百、千、万、十万......
总之,自然数就是指大于等于0的整数。当然,负数、小数、分数等就不算在其内了。[2]
自然数的性质
1.对自然数可以定义加法和乘法。其中,加法运算“+”定义为:
a + 0 = a;
a + S(x) = S(a +x), 其中,S(x)表示x的后继者。
如果我们将S(0)定义为符号“1”,那么b + 1 = b + S(0) = S( b + 0 ) = S(b),即,“+1”运算可求得任意自然数的后继者。
同理,乘法运算“×”定义为:
a × 0 = 0;
a × S(b) = a × b + a
自然数的减法和除法可以由类似加法和乘法的逆的方式定义。
2.有序性。自然数的有序性是指,自然数可以从0开始,不重复也不遗漏地排成一个数列:0,1,2,3,…这个数列叫自然数列。一个集合的元素如果能与自然数列或者自然数列的一部分建立一一对应,我们就说这个集合是可数的,否则就说它是不可数的。
3.无限性。自然数集是一个无穷集合,自然数列可以无止境地写下去。
对于无限集合来说“,元素个数”的概念已经不适用,用数个数的方法比较集合元素的多少只适用于有限集合。为了比较两个无限集合的元素的多少,集合论的创立者德国数学家康托尔引入了一一对应的方法。这一方法对于有限集合显然是适用的,21世纪把它推广到无限集合,即如果两个无限集合的元素之间能建立一个一一对应,我们就认为这两个集合的元素是同样多的。对于无限集合,我们不再说它们的元素个数相同,而说这两个集合的基数相同,或者说,这两个集合等势。与有限集对比,无限集有一些特殊的性质,其一是它可以与自己的真子集建立一一对应,例如:
0 1 2 3 4 …
1 3 5 7 9 …
这就是说,这两个集合有同样多的元素,或者说,它们是等势的。大数学家希尔伯特曾用一个有趣的例子来说明自然数的无限性:如果一个旅馆只有有限个房间,当它的房间都住满了时,再来一个旅客,经理就无法让他入住了。但如果这个旅馆有无数个房间,也都住满了,经理却仍可以安排这位旅客:他把1号房间的旅客换到2号房间,把2号房间的旅客换到3号房间,……如此继续下去,就把1号房间腾出来了。
4.传递性:设 n1,n2,n3 都是自然数,若 n1>n2,n2>n3,那么 n1>n3。
5.三岐性:对于任意两个自然数n1,n2,有且只有下列三种关系之一:n1>n2,n1=n2或n1<n2。
6.最小数原理:自然数集合的任一非空子集中必有最小的数。具备性质3、4的数集称为线性序集。容易看出,有理数集、实数集都是线性序集。但是这两个数集都不具备性质5,例如所有形如nm(m>n,m,n 都是自然数)的数组成的集合是有理数集的非空子集,这个集合就没有最小数;开区间(0,1)是实数集合的非空子集,它也没有最小数。
具备性质5的集合称为良序集,自然数集合就是一种良序集。容易看出,加入0之后的自然数集仍然具备上述性质3、4、5,就是说,仍然是线性序集和良序集。
自然数的分类
按是否是偶数分
可分为奇数和偶数。
1、奇数:不能被2整除的数叫奇数。
2、偶数:能被2整除的数叫偶数。也就是说,除了奇数,就是偶数
注:0是偶数。(2002年国际数学协会规定,零为偶数.我国2004年也规定零为偶数。偶数可以被2整除,0照样可以,只不过得数依然是0而已)。
按因数个数分
可分为质数、合数、1和0。
1、质 数:只有1和它本身这两个因数的自然数叫做质数。也称作素数。
2、合 数:除了1和它本身还有其它的因数的自然数叫做合数。
3、1:只有1个因数。它既不是质数也不是合数。
4、当然0不能计算因数,和1一样,也不是质数也不是合数。
备注:这里是因数不是约数。
所有自然数之和
如果我们考虑无穷级数,将其(不正式地)视为数列中所有项的和,在这种意义下我们可以说所有自然数的和是正无穷大,或记作1+2+3+4+...=+∞。(这是因为给定任意大的正数M,均存在某部分和,使其值大于M。)
但在弦论的某些结果中,1+2+3+4+5+6+7...=-1/12一式确实是有意义的。[15]
在说明箇中原因前,我们可透过以下演示来"理解"为何这个和值会是-1/12。
首先我们需要一个等式:S1=1-1+1-1+1-1+1...=0.5
我们用:1-S1=1-(1-1+1-1+1-1+1...)
=1-1+1-1+1-1+1...
=S1
所以得到:2S1=1,即S1=0.5
所以1-1+1-1+1-1+1...=0.5
还需要另外一个等式:S2=1-2+3-4+5-6...=0.25
我们用2S2=S2+S2=(1-2+3-4+5-6...)+(1-2+3+4+5-6...)
我们错开一位来计算,得2S2=1+(-2+1)+(3-2)+(-4+3)+...,所以2S2=1-1+1-1+1-1+1...
我们又回到了前面的一个等式,所以2S2=0.5
S2=0.25
下面我们只需要用S-S2=(1+2+3+4+5+6+7...)-(1-2+3-4+5-6+...)
=4+8+12...
我们提一个4出来令S-S2=4(1+2+3...)=4S
所以S-0.25=4S
-0.25=3S
S=-1/12
以上的演示固然是不严谨的。但是,所得的值却是有意义的。事实上,我们可以用别的形式去得出该级数的一个广义和,比如透过拉马努金求和得出-1/12,也可以借用黎曼ζ函数,在s = −1 时由 ζ(s) 的解析连续得出-1/12。