導覽
近期變更
隨機頁面
新手上路
新頁面
優質條目評選
繁體
不转换
简体
繁體
3.144.114.223
登入
工具
閱讀
檢視原始碼
特殊頁面
頁面資訊
求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。
檢視 Scikit·learn机器学习 的原始碼
←
Scikit·learn机器学习
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- |<center><img src=https://www0.kfzimg.com/sw/kfz-cos/kfzimg/5647422/07e81ccadbe01ace_s.jpg width="260"></center> <small>[https://book.kongfz.com/408661/6957713717 来自 孔夫子网 的图片]</small> |} 《'''scikit·learn机器学习'''》,[美] 加文·海克(Gavin Hackeling) 著,张浩然 译,出版社: 人民邮电出版社。 人民邮电出版社是全国优秀[[出版社]]、全国百佳图书出版单位。人民邮电出版社出版领域涵盖科技出版、教育出版、大众出版,涉及信息技术、[[通信]]、工业技术、科普<ref>[https://www.douban.com/group/topic/116170316/ 100部科普经典名著],豆瓣,2018-04-26</ref>、经济管理、摄影、艺术、运动与休闲、心理学、少儿、大中专教材等10余个出版门类,年出版[[图书]]<ref>[https://www.xuexila.com/lishi/zixun/ziliao/18945.html 图书的演变历史资料],学习啦,2017-06-07</ref>近万种。 ==内容简介== 近年来,Python语言成为了广受欢迎的编程语言,而它在机器学习领域也有很好的表现。scikit-learn是一个用Python语言编写的机器学习算法库,它可以实现一系列常用的机器学习算法,是一个好工具。 本书通过14章内容,详细地介绍了一系列机器学习模型和scikit-learn的使用技巧。本书从机器学习的基础理论讲起,涵盖了简单线性回归、K-近邻算法、特征提取、多元线性回归、[[逻辑]]回归、朴素贝叶斯、非线性分类、决策树回归、随机森林、感知机、支持向量机、人工神经网络、K-均值算法、主成分分析等重要话题。 本书适合机器学习领域的工程师学习,也适合想要了解scikit-learn的数据科学家阅读。通过阅读本书,读者将有效提升自己在机器学习模型的构建和评估方面的能力,并能够高效地解决机器学习难题。 ==作者介绍== Gavin Hackeling 是一名数据科学家和[[作家]]。他研究过各种各样的机器学习问题,包括自动语音识别、文档分类、目标识别、以及语义切分。Gavin Hackeling 毕业于北卡罗来纳大学和纽约大学,目前和他的妻子和猫生活在布鲁克林。 ==参考文献== [[Category:040 類書總論;百科全書總論]]
返回「
Scikit·learn机器学习
」頁面