導覽
近期變更
隨機頁面
新手上路
新頁面
優質條目評選
繁體
不转换
简体
繁體
3.144.6.29
登入
工具
閱讀
檢視原始碼
特殊頁面
頁面資訊
求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。
檢視 动量定理 的原始碼
←
动量定理
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- | style="background: #FF2400" align= center| '''<big>动量定理</big>''' |- |<center><img src=https://gimg2.baidu.com/image_search/src=http%3A%2F%2Fbkimg.cdn.bcebos.com%2Fpic%2F0b7b02087bf40ad1e4ec6e0c552c11dfa8ecced1&refer=http%3A%2F%2Fbkimg.cdn.bcebos.com&app=2002&size=f9999,10000&q=a80&n=0&g=0n&fmt=auto?sec=1655031211&t=73cf9d7ea9a5996674cdac9ef606fb51 width="300"></center> <small>[https://image.baidu.com/search/detail?ct=503316480&z=0&ipn=d&word=%E5%8A%A8%E9%87%8F%E5%AE%9A%E7%90%86&step_word=&hs=0&pn=5&spn=0&di=7077213605308923905&pi=0&rn=1&tn=baiduimagedetail&is=0%2C0&istype=0&ie=utf-8&oe=utf-8&in=&cl=2&lm=-1&st=undefined&cs=1695764694%2C195536331&os=1417718045%2C4046937578&simid=4219528676%2C594362309&adpicid=0&lpn=0&ln=1774&fr=&fmq=1652439202336_R&fm=&ic=undefined&s=undefined&hd=undefined&latest=undefined©right=undefined&se=&sme=&tab=0&width=undefined&height=undefined&face=undefined&ist=&jit=&cg=&bdtype=0&oriquery=&objurl=https%3A%2F%2Fgimg2.baidu.com%2Fimage_search%2Fsrc%3Dhttp%3A%2F%2Fbkimg.cdn.bcebos.com%2Fpic%2F0b7b02087bf40ad1e4ec6e0c552c11dfa8ecced1%26refer%3Dhttp%3A%2F%2Fbkimg.cdn.bcebos.com%26app%3D2002%26size%3Df9999%2C10000%26q%3Da80%26n%3D0%26g%3D0n%26fmt%3Dauto%3Fsec%3D1655031211%26t%3D73cf9d7ea9a5996674cdac9ef606fb51&fromurl=ippr_z2C%24qAzdH3FAzdH3Fkwthj_z%26e3Bkwt17_z%26e3Bv54AzdH3Ftpj4AzdH3F%25Ec%25bA%25Ab%25El%25b0%25bFAzdH3F8mbdb0&gsm=6&rpstart=0&rpnum=0&islist=&querylist=&nojc=undefined&dyTabStr=MCwzLDIsNiw0LDEsNSw4LDcsOQ%3D%3D 来自 呢图网 的图片]</small> |- | style="background: #FF2400" align= center| '''<big></big>''' |- | align= light| 中文名;动量定理 外文名;momentum 应用学科;物理 表达式;Ft=mv′-mv=p′-p |} 动力学的普遍定理之一。'''动量定理'''的[[内容]]为:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量(用字母I表示),即力与力作用时间的乘积,数学表达式为FΔt=mΔv。公式中的冲量为所有外力的冲量的矢量和。动量定理是一个由实验观测总结的规律,也可由牛顿第二定律和[[运动]]学公式推导出来,其物理实质也与牛顿第二定律相同,这也意味着它仅能在经典力学范围内适用。而与动量定理相关的定律——动量守恒定律,大到接近光速的高速,小到分子原子的尺度,它依然成立。[[动量守恒定律]]的定义为:如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变。由此可见,动量定理和动量守恒定律是两个不同的概念,不能混为一谈。<ref>[https://wenku.so.com/d/b21ef543d00fcadc34ae2070a509c546 动量定理模块知识点总结],360文库 , 2018年10月4日</ref> ==含义== 动量定理的含义为:物体在一个过程始末的动量[[变化]]量等于它在这个过程中所受力的冲量。 (高中阶段此公式亦可写作) F指合外力,如果为变力,可以使用平均值; =既表示数值一致,又表示[[方向]]一致; 矢量求和,可以使用正交分解法; ==适用条件== (1)在牛顿力学适用的条件下才可适用动量定理,即动量定理仅适用于宏观低速的研究[[对象]]。对于微观粒子和以光速运动的物体,动量定理不再适用; (2)只适用于惯性[[参考]]系,若对于非惯性参考系,必须加上惯性力的冲量。且v1,v2必须相对于同一惯性系。 ==推导过程== 将F = ma (动力学方程牛顿第二运动定律)—— 代入v = v₀ + at (运动学方程) 得 化简得mv- mv₀ = Ft 注:把mv做为描述物体运动状态的量,叫[[动量]]。 ==说明== (1)动量定理公式中的F是研究对象所受的包括重力在内的所有外力的合力。它可以是恒力,也可以是变力。当合外力为变力时,F是合外力对作用时间的平均值。p为物体初动量,p′为物体末动量,t为合外力的作用[[时间]]。 (2)FΔt=mΔv 是矢量式。在应用动量定理时,应该遵循矢量运算的平行四边形法则,也可以采用正交分解法,把矢量运算转化为标量运算。假设用Fx(或Fy)表示合外力在x(或y)轴上的分量。(或)和vx (或vy )表示物体的初速度和末速度在x(或y)轴上的分量,则 Ix=mvx-mvx₀ Iy=mvy-mvy₀ 上述两式表明,合外力的冲量在某一坐标轴上的分量等于物体动量的增量在同一[[坐标轴]]上的分量。在写动量定理的分量方程式时,对于已知量,凡是与坐标轴正方向同向者取正值,凡是与坐标轴正方向反向者取负值;对于未知量,一般先假设为正方向,若计算结果为正值。说明 实际方向与坐标轴正方向一致,若计算结果为负值,说明实际方向与坐标轴正方向[[相反]]。 ==推广形式== 可以推广为质点系的动量定理,即系统内动量的增量和等于合外力的冲量。 ==同相关定律定理含义区别== [[动量定理]] 反映了力对时间的累积效应(冲量),其增量是力在时间上的积累。 动能定理 反映了力对空间的累积效应(功),其增量是力在空间上的积累。 动量守恒定律 ==应用== 由于动量定理只涉及研究对象的初末两个状态,故有时对复杂的物理过程合理地应用动量定理可以极大地优化问题解决[[过程]]; 对于不涉及物体加速度a和物体位移x的运动和力的问题,应用动量定理有时会更为简便; 应用于一类流体型动量定理问题:假设有一段持续的水柱打在某固定不动的物体上后,水流沿其原来运动方向的速度减为0,设水流打在该物体上时对该[[物体]]的作用力为F,水的密度为ρ,水流的初速度大小为v,水的流量为Q,忽略空气阻力和水的重力,则对在很短的一段时间t内打在该[[物体]]上的水柱进行研究,设其体积为V,质量为m,由动量定理:Ft=mv①,由密度公式:m=ρV ②,由液体流量公式:V=Qt ③,联立①②③式推导可得:F=ρQv.(此公式可作为二级结论记忆) ==微分形式的动量定理== 微分形式的动量定理:若质点系的总质量为M,质心速度为,则它的总动量为。 上式二边对时间求导数,并利用质心运动定理得:,(1), 式中 为作用在质点系上所有外力的矢量和。式(1)就是用微分形式表示的动量定理,它表明:质点系的总动量对时间的变化率等于质点系所受外力的矢量和。可以看出,质点系总动量的变化仅与外力有关,并不受质点系中各质点相互作用的内力的影响。 ==积分形式的动量定理== 积分形式的动量定理积分式(1),并用p1,和p2,分别表示质点系在时间t1和t2的总动量,则有:式中为时间间隔t2-t1内作用于第i个质点上的外力的冲量。上式是用积分形式表示的动量定理,它表明:在某力学过程的时间间隔内,质点系总动量的改变,等于在同一时间间隔内作用于质点系所有外力的冲量的[[矢量]]和。 由于动量定理和质心运动定理是可以相互推导的,所以这两定理在本质上是一致的。在研究刚体或刚体系统的运动时,由于质心坐标容易确定,用质心运动[[定理]]比较方便;但在研究流体运动时,由于质心的坐标难以确定,用动量定理比较适宜。质点是质点系的一个特殊[[情况]],故动量定理也适用于一个质点。 ==参考文献== 1、词条作者:戴宗信.《[[中国大百科全书]]》74卷(第一版)力学 词条:动量定理:中国大百科全书[[出版社]],1987 :118页. == 参考来源 == <center> {{#iDisplay:s3015l84rl4|480|270|qq}} <center>动量定理的推导和内容具体应该是?</center> </center> == 参考资料 == [[Category: 970 技藝總論]]
返回「
动量定理
」頁面