導覽
近期變更
隨機頁面
新手上路
新頁面
優質條目評選
繁體
不转换
简体
繁體
3.135.206.25
登入
工具
閱讀
檢視原始碼
特殊頁面
頁面資訊
求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。
檢視 导数 的原始碼
←
导数
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- | style="background: #FF2400" align= center| '''<big>导数</big>''' |- |<center><img src=https://gimg2.baidu.com/image_search/src=http%3A%2F%2Fwww.mianfeiwendang.com%2Fpic%2F08fc9982083302a80ec7c296011fbf97c84d8faf%2F2-810-jpg_6-1080-0-0-1080.jpg&refer=http%3A%2F%2Fwww.mianfeiwendang.com&app=2002&size=f9999,10000&q=a80&n=0&g=0n&fmt=auto?sec=1652828694&t=a7529de6bcf3c928fe3a962e967ff028 width="300"></center> <small>[https://image.baidu.com/search/detail?ct=503316480&z=0&ipn=d&word=%E5%AF%BC%E6%95%B0&step_word=&hs=0&pn=12&spn=0&di=7077204560107798529&pi=0&rn=1&tn=baiduimagedetail&is=0%2C0&istype=0&ie=utf-8&oe=utf-8&in=&cl=2&lm=-1&st=undefined&cs=1790096031%2C4106254597&os=2638119622%2C2792101675&simid=4259919425%2C677040856&adpicid=0&lpn=0&ln=1889&fr=&fmq=1650236688455_R&fm=&ic=undefined&s=undefined&hd=undefined&latest=undefined©right=undefined&se=&sme=&tab=0&width=undefined&height=undefined&face=undefined&ist=&jit=&cg=&bdtype=0&oriquery=&objurl=https%3A%2F%2Fgimg2.baidu.com%2Fimage_search%2Fsrc%3Dhttp%3A%2F%2Fwww.mianfeiwendang.com%2Fpic%2F08fc9982083302a80ec7c296011fbf97c84d8faf%2F2-810-jpg_6-1080-0-0-1080.jpg%26refer%3Dhttp%3A%2F%2Fwww.mianfeiwendang.com%26app%3D2002%26size%3Df9999%2C10000%26q%3Da80%26n%3D0%26g%3D0n%26fmt%3Dauto%3Fsec%3D1652828694%26t%3Da7529de6bcf3c928fe3a962e967ff028&fromurl=ippr_z2C%24qAzdH3FAzdH3Fooo_z%26e3B4twgujtojg1wg2_z%26e3Bv54AzdH3F15vAzdH3Fabuvllbdabnnadwbajv0vdlma88ukul0vb91buwuAzdH3Fd&gsm=d&rpstart=0&rpnum=0&islist=&querylist=&nojc=undefined&dyTabStr=MCwzLDIsNSw2LDQsMSw4LDcsOQ%3D%3D 来自 呢图网 的图片]</small> |- | style="background: #FF2400" align= center| '''<big></big>''' |- | align= light| 名称 :导数 |} '''导数'''(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与[[自变量]]增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。 导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的[[变化]]率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。 对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导[[函数]](简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以反过来求原来的函数,即不定积分。 微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的[[操作]],它们都是微积分学中最为基础的概念。<ref>[https://www.360kuai.com/pc/9d8941e2c4dfff27d?cota=3&kuai_so=1&sign=360_7bc3b157&refer_scene=so_55 考研数学-浅析高阶导数的计算 ],快资讯 , 2022-03-29</ref>
返回「
导数
」頁面