首頁
隨機
登入
設定
關於 求真百科
免責聲明
開啟主選單
求真百科
搜尋
檢視 Python机器学习中的数学修炼 的原始碼
←
Python机器学习中的数学修炼
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- |<center><img src=https://www0.kfzimg.com/sw/kfzimg/3792/034f23474adef66878_s.jpg width="260"></center> <small>[https://book.kongfz.com/508937/7296240156 来自 孔夫子网 的图片]</small> |} 《'''Python机器学习中的数学修炼'''》,左飞 著,出版社: 清华大学出版社。 清华大学出版社成立于1980年6月,是教育部主管、[[清华大学]]主办的综合性大学出版社<ref>[http://www.zhongyw.com.cn/news/show-53574.html 我国出版社的等级划分和分类标准],知网出书,2021-03-01</ref>。清华社先后荣获 “先进高校出版社”“全国优秀出版社”“全国百佳图书出版单位”“中国版权最具影响力企业”“首届全国教材建设奖全国[[教材]]建设先进集体”等荣誉<ref>[http://www.tup.tsinghua.edu.cn/aboutus/qyjj.html 企业简介],清华大学出版社有限公司</ref>。 ==内容简介== 数学是机器学习和数据科学的基础,任何期望涉足相关领域并切实领悟具体技术与方法的人都无法绕过数学这一关。本书系统地整理并介绍了机器学习中所涉及的必备数学基础,这些都是笔者从浩如烟海的数学知识中精心萃取的,在学习和研究机器学习技术时所必须的内容。具体包括[[微积分]](主要是与z优化内容相关的部分)、概率论与数理统计、数值计算、信息论、凸优化、泛函分析基础与变分法,以及蒙特卡洛采样等话题。为了帮助读者加深理解并强化所学,本书还从上述数学基础出发进一步介绍了回归、分类、聚类、流形学习、集成学习,以及概率图模型等机器学习领域中的重要话题。其间,本书将引领读者循序渐进地拆解各路算法的核心设计思想及彼此间的关联关系,并结合具体例子演示基于Python进行实际问题求解的步骤与方法。真正做到理论与实践并重,让读者知其然更知其所以然。本书可作为机器学习及相关课程的教学参考书,适用于高等院校人工智能、机器学习或数据挖掘等相关专业的师生研习之用,也可供从事计算机应用(特别是数据科学相关专业)的研发人员参考。 ==作者介绍== 左飞 博士,技术作家、译者。著作涉及[[人工智能]]、图像处理和编程语言等多个领域,其中两部作品的繁体版在中国台湾地区发行。同时,他还翻译出版了包括《编码》在内的多部经典著作。曾荣获“最受读者喜爱的IT图书作译者奖”。 ==参考文献== [[Category:040 類書總論;百科全書總論]]
返回「
Python机器学习中的数学修炼
」頁面