求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

偏導數檢視原始碼討論檢視歷史

事實揭露 揭密真相
前往: 導覽搜尋
偏導數

來自 無憂文檔網 的圖片


在數學中,一個多變量的函數偏導數,就是它關於其中一個變量的導數而保持其他變量恆定(相對於全導數,在其中所有變量都允許變化)。偏導數在向量分析和微分幾何中是很有用的。[1]

定義

設U⊂ℝn,給定函數f:U→ℝ,p∈U,f在p點的第i偏導數定義為 Dif(p)=limt→0(f(p+tei)-f(p))/t=(f∘c)'(0),其中c為過點p的方向為ei的線c(t)=p+tei。   設有二元函數 z=f(x,y) ,點(x0,y0)是其定義域D 內一點。把 y 固定在 y0而讓 x 在 x0 有增量 △x ,相應地函數 z=f(x,y) 有增量(稱為對 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。 如果△z 與 △x 之比當 △x→0 時的極限存在,那麼此極限值稱為函數 z=f(x,y) 在 (x0,y0)處對 x 的偏導數,記作 f'x(x0,y0)或函數 z=f(x,y) 在(x0,y0)處對 x 的偏導數,實際上就是把 y 固定在 y0看成常數後,一元函數z=f(x,y0)在 x0處的導數。

y方向的偏導

同樣,把 x 固定在 x0,讓 y 有增量 △y ,如果極限存在那麼此極限稱為函數 z=(x,y) 在 (x0,y0)處對 y 的偏導數。記作f'y(x0,y0)。

引入

一元函數中,導數就是函數的變化率。對於二元函數的「變化率」,由於自變量多了一個,情況就要複雜的多。 在 xOy 平面內,當動點由 P(x0,y0) 沿不同方向變化時,函數 f(x,y) 的變化快慢一般來說是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 點處沿不同方向的變化率。 在這裡我們只學習函數 f(x,y) 沿着平行於 x 軸和平行於 y 軸兩個特殊方位變動時, f(x,y) 的變化率。 偏導數的表示符號為:∂。 偏導數反映的是函數沿坐標軸方向的變化率。  

求法

當函數 z=f(x,y) 在 (x0,y0)的兩個偏導數 f'x(x0,y0) 與 f'y(x0,y0)都存在時,我們稱 f(x,y) 在 (x0,y0)處可導。如果函數 f(x,y) 在域 D 的每一點均可導,那麼稱函數 f(x,y) 在域 D 可導。 此時,對應於域 D 的每一點 (x,y) ,必有一個對 x (對 y )的偏導數,因而在域 D 確定了一個新的二元函數,稱為 f(x,y) 對 x (對 y )的偏導函數。簡稱偏導數。 按偏導數的定義,將多元函數關於一個自變量求偏導數時,就將其餘的自變量看成常數,此時他的求導方法與一元函數導數的求法是一樣的。

幾何意義

偏導數 f'x(x0,y0) 表示固定面上一點對 x 軸的切線斜率;偏導數 f'y(x0,y0) 表示固定面上一點對 y 軸的切線斜率。 高階偏導數:如果二元函數 z=f(x,y) 的偏導數 f'x(x,y) 與 f'y(x,y) 仍然可導,那麼這兩個偏導函數的偏導數稱為 z=f(x,y) 的二階偏導數。二元函數的二階偏導數有四個:f"xx,f"xy,f"yx,f"yy。 注意: f"xy與f"yx的區別在於:前者是先對 x 求偏導,然後將所得的偏導函數再對 y 求偏導;後者是先對 y 求偏導再對 x 求偏導。當 f"xy 與 f"yx 都連續時,求導的結果與先後次序無關。  

參考來源

  1. [1],無憂文檔 ,