求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

變更

前往: 導覽搜尋

量子力学

移除 2,655 位元組, 5 年前
無編輯摘要
{{NoteTA
|G1=物理學
|=zh-cn:阿尔伯特·爱因斯坦; zh-tw:阿爾伯特·爱因斯坦; zh-hk:亞厘畢·爱因斯坦;
}}
{{参见简介}}
{{Good article}}
[[File:Solvay conference 1927.jpg|thumb|250px|1927年第五次[[索尔维会议]],此次會議主題為「[[電子]]和[[光子]]」,世界上最主要的物理學家聚集在一起討論新近表述的量子理論。]]
'''量子力学'''(英語:quantum mechanics)是[[物理學]]的分支學科。它主要描写微观的事物,与[[相对论]]一起被认为是[[现代物理学]]的两大基本支柱,许多物理学理论和科学,如[[原子物理学]]、[[固体物理学]]、[[原子核物理学|核物理学]]和[[粒子物理學|粒子物理学]]以及其它相关的學科,都是以其为基础。
== 关键现象、歷史背景 ==
=== 黑体辐射 ===
[[File:RWP-comparison.svg|thumb|right|200px|[[普朗克定律]](绿)、[[維恩定律]](蓝)和[[瑞利-金斯定律]](红)在频域下的比较,可见维恩定律在高频区域和普朗克定律相符,瑞利-金斯定律在低频区域和普朗克定律相符。]]{{Main|黑体辐射}}
理想[[黑體 (物理學)|黑体]]可以吸收所有照射到它表面的[[電磁辐射]],并将这些辐射转化为[[热辐射]],其光谱特征仅与该黑体的温度有关,與黑體的材質無關。从古典物理学出发推導出的[[維恩定律]]在低頻區域與實驗數據不相符,而在高頻區域,从古典物理学的[[能量均分定理]]推導出[[瑞利-金斯定律]]又與實驗數據不相符,在辐射频率趋向无穷大时,能量也會變得無窮大,這結果被称作“[[紫外灾变]]”。然而在那時,普朗克並未注意到紫外灾变的嚴重性。
=== 光电效应 ===
[[File:Photoelectric effect.svg|thumb|200px|光電效應示意圖:來自左上方的光子衝擊到金屬板,將電子逐出金屬板,並且向右上方移去。]]{{Main|光电效应}}
[[海因里希·赫兹]]於1887年做实验发现,如果照射[[紫外光]]於金属表面,則电子會從金属表面被發射出来,他因此發現了[[光電效應]]。1905年,[[阿爾伯特·爱因斯坦]]提出了光量子的理论来解释这个现象。他認為,光束是由一群離散的光量子所組成,而不是連續性波動。這些光量子現今被稱為[[光子]],其能量<math>E</math>为
:<math>E=h\nu</math>
假若光的频率低於金屬的極限頻率,那么它无法使得电子获得足够的逸出功。这时,不论[[輻照度]]有多大,照射時間有多長,都不會發生光電效應。而当入射光的頻率高於極限頻率時,即使光不夠強,當它射到金屬表面時也會觀察到光電子發射。[[羅伯特·密立根]]後來做實驗證明這些理論與預言屬實。
爱因斯坦將普朗克的量子理论加以延伸擴展,他提出不仅仅物质与电磁辐射之间的相互作用是量子化的,而且量子化是一个基本物理特性的理论。通过这个新理论,他得以解释[[光电效应]]。<ref name=Halliday>{{citation |last1=Halliday|first1=David|last2=Resnick|first2=Robert|last3=Walker|first3=Jerl|title = Fundamental of Physics|publisher = John Wiley and Sons, Inc.|location = USA|edition = 7th|isbn=0-471-23231-9|year=2005}}</ref>{{rp|1060-1063}}<ref name=Kragh2002/>{{rp|67-68}}
=== 原子结构 ===
{{main|原子論}}[[File:Bohr atom model.png|thumb|right|200px| 按照氫原子或類氫原子的玻爾模型,帶負價的電子被侷限於原子殼層,它們環繞著尺寸很小的帶正價原子核。電子從一個能量較高的軌道躍遷到能量較低的軌道時,會以電磁波的形式將能量差釋出。<ref name="Akhlesh Lakhtakia Ed. 1996">{{cite journal
|author=Akhlesh Lakhtakia (Ed.)
|year=1996
|doi=10.1119/1.18691
|issue=9
}}</ref>{{rp|49-82}}]]
20世纪初,[[卢瑟福模型]]被公认为正确的[[原子论|原子模型]]。这个模型假设带负电荷的电子,像行星围绕太阳运转一样,围绕带正电荷的[[原子核]]运转。在这个过程中[[库仑定律|库仑力]]与[[离心力]]必须平衡。
反之,通过吸收同样频率的光子,电子可以从低能的轨道,躍遷到高能的轨道上。
玻尔模型可以解释[[氢原子]]的结构。改善的玻尔模型,还可以解释[[類氫原子]]的結構,即 He<sup>+</sup>, Li<sup>2+</sup>, Be<sup>3+</sup> 等。但它还不够完善,仍然无法准确地解释其它原子的物理现象。<ref name=Kragh2002/>{{rp|53-57}}<ref name=French1978>{{citation | last=French|first=Anthony| title = An Introduction to Quantum Physics| date = 1978 | publisher = W. W. Norton, Inc.}}</ref>{{rp|24-29}}
=== 物质波 ===
{{main|物質波}}[[File:Doubleslitexperiment results Tanamura 1.gif|thumb|right|200px|{{link-ja|外村彰|外村彰}}(Akira Tonomura) 團隊做電子雙縫實驗得到的干涉圖樣:每秒約有1000個電子抵達探測屏,電子與電子之間的距離約為150km,兩個電子同時存在於電子發射器與探測屏之間的概率微乎其微。圖中每一亮點表示一個電子抵達探測屏,{{efn|雖然每一點表示一個電子抵達探測屏,這事實並不能表現出電子的粒子性,因為探測器是由離散原子組成的,這可以詮釋為電子波與離散原子彼此之間的相互作用。<ref name=Hobson>{{cite journal
| last =Hobson
| first =Art
| date =1988
| doi =10.1119/1.16104
}}</ref>]]
1924年,[[路易·德布罗意]]發表博士論文提出,粒子拥有波动性,其波长<math>\lambda_{Broglie}</math>与动量<math>p</math>成反比,以方程式表示為<ref>{{cite book | last=Davisson | first=Clinton | chapter=The Discovery of Electron Waves | title=Nobel Lectures, Physics 1922-1941 | url=http://nobelprize.org/nobel_prizes/physics/laureates/1937/davisson-lecture.html | location=Amsterdam | publisher=Elsevier Publishing Company | year=1965 | isbn= | accessdate=2007-09-17}}</ref>
這理論稱為[[德布羅意假說]],又稱為[[德布羅意假說|物質波假說]]。這意味著電子不但具有粒子性,還具有波動性。
1927年,[[克林顿·戴维森]]與[[雷斯特·革末]]做實驗將低能量電子入射於鎳晶體,然後測量對於每一個角度的散射強度。從分析實驗數據,他們發現,假設加速電勢為5.4eV,則在50&deg;之處會出現強勁反射,符合[[威廉·布拉格]]於1913年所提出的 [[X射線]]繞射性質。這驚人的結果證實電子是一種物質波,也證實了物質波假說。這實驗就是著名的[[戴維森-革末實驗]]。<ref name=French1978/>{{rp|64-68}}
电子的[[双缝实验]]可以非常生动地展示出多种不同的量子力学现象。<ref name="Feynman_2006">{{cite book|last = 費曼|first = 理查|last2 = 雷頓|first2 = 羅伯|last3 = 山德士|first3 = 馬修|title = 費曼物理學講義 III (1) 量子行為|publisher =天下文化書|location =台灣|date = 2006|pages = pp. 38-60|isbn = 986-417-672-2 }}</ref>如右图所示,
== 数学基础 ==
{{main| 量子力学的数学表述}} 
在二十世紀二十年代,出现了两种量子物理的理论,即[[维尔纳·海森堡]]的[[矩阵力学]]和[[埃尔温·薛定谔]]的[[波动力学]]。
海森堡主張,只有在實驗裏能夠觀察到的物理量([[可觀察量]]),才具有物理意義,才可以用理論描述其物理行為,例如,不能直接觀察到電子運動於原子裏的位置與週期。因此,他著重於研究電子躍遷時所發射光波的離散頻率和[[輻照度]],這些是可觀察量。但是,他無法實際應用這點子於[[氫原子]]問題,因為這問題太過複雜,他只能改應用這點子於比較簡單,但也比較不實際的問題。經過一番努力,他計算出[[諧振子]]問題的[[發射光譜|能譜]]與[[零點能量]],符合[[光譜學|分子光譜學]]的結果。另外,在海森堡理論中,系統的[[哈密頓量]]是位置和動量的函數,但它們不再具有古典力學中的定義,而是由二階(代表著過程的初態和終態)[[傅立葉變換|傅立葉係數]]的矩陣給出。海森堡還發現,這些矩陣互不[[對易關係|對易]]。這些論述後來發展成為矩陣力學。<ref name=Kragh2002/>{{rp|161-163}}
從德布羅意論文的相對論性理論,薛定谔推導出一種波動方程式,稱為[[薛定谔方程式]];用這方程式可以計算出氫原子的譜線,得到與[[波耳模型]]完全相同的答案。波动力学的基礎方程式就是薛定谔方程式<ref name=Kragh2002/>{{rp|163-164}}
薛定谔率先於1926年证明了这两种理论的等价性。稍后,{{le|卡爾·埃卡特|Carl Eckart}}和[[沃爾夫岡·包立]]也给出類似证明,<ref name=Kragh2002/>{{rp|166}}[[约翰·冯·诺伊曼]]严格地证明了波动力学和矩阵力学的等价性。<ref name=Neumann1932>{{cite book
=== 基礎公設 ===
整個量子力学的数学理论可以建立於五个基礎公設。這些公設不能被嚴格推導出來的,而是從實驗結果仔細分析归纳总结而得到的。從這五個公設,可以推導出整個量子力學。假若量子力學的理論結果不符合實驗結果,則必需將這些基礎公設加以修改,直到沒有任何不符合之處。至今為止,量子力學已被實驗核對至極高準確度,還沒有找到任何與理論不符合的實驗結果,雖然有些理論很難直覺地用經典物理的概念來理解,例如,[[波粒二象性]]、[[量子糾纏]]等等。<ref>{{cite journal | last =Zurek | first =Wojciech | title =Quantum Darwinism, Classical Reality, and the randomness of quantum jumps | journal =Physics Today | volume =67 | issue =10 | pages =44-45 | date =2014}}</ref><ref name="Laloë">{{cite book|author=Claude Cohen-Tannoudji, Bernard Diu, Franck Laloë|title=Quantum Mechanics Volume 1|publisher=Hermann|isbn=978-2-7056-8392-4}}</ref>{{rp|211ff}}<ref name="Zettili2009">{{cite book|author=Nouredine Zettili|title=Quantum Mechanics: Concepts and Applications|accessdate=27 August 2013|date=17 February 2009|publisher=John Wiley & Sons|isbn=978-0-470-02678-6}}</ref>{{rp|165-167}}
# 量子態公設:量子系统在任意时刻的状态(量子態)可以由[[希尔伯特空间]] <math>\mathcal{H}</math> 中的態矢量 <math>|\psi\rangle</math> 来設定,這態矢量完備地給出了這量子系統的所有信息。這公設意味著量子系統遵守[[态叠加原理]],假若<math>|\psi_1\rangle</math>、<math>|\psi_2\rangle</math>屬於希尔伯特空间<math>\mathcal{H}</math>,則<math>c_1|\psi_1\rangle+c_2|\psi_2\rangle</math>也屬於希尔伯特空间<math>\mathcal{H}</math>。
#時間演化公設: 态矢量為 <math>|\psi(t)\rangle</math> 的量子系統,其动力学演化可以用[[薛定谔方程#含時薛定諤方程式|薛定谔方程]]表示,<math>i\hbar \frac{\partial}{\partial t}|\psi(t)\rangle = \hat{H}|\psi(t)\rangle</math> ;其中,[[哈密顿算符]] <math>\hat{H}</math> 对应於量子系统的总能量,<math>\hbar</math>是[[約化普朗克常數]]。根據薛定谔方程,假設時間從<math>t_0</math>流易到<math>t</math>,則態向量從<math>|\psi(t_0)\rangle</math>演化到 <math>|\psi(t)\rangle</math> ,這過程以方程式表示為<math>|\psi(t)\rangle = \hat{U}(t, t_0) |\psi(t_0)\rangle</math> ;其中,<math>\hat{U}(t, t_0)= e^{-i\hat{H}(t-t_0) / \hbar}</math> 是時間演化算符。
=== 量子態與量子算符 ===
[[File:Stern-Gerlach experiment zh.png|thumb|250px|設定[[斯特恩-革拉赫實驗]]儀器的磁場方向為z-軸,入射的銀原子束可以被分裂成兩道銀原子束,每一道銀原子束代表一種量子態,上旋<math>|\uparrow\rangle</math>或下旋<math>|\downarrow\rangle</math>。<ref name=Sakurai>{{Citation | last1 = Sakurai | first1 = J. J. |last2 = Napolitano | first2 = Jim | title = Modern Quantum Mechanics | edition = 2nd | publisher = Addison-Wesley | year = 2010 | isbn =978-0805382914 }}</ref>{{rp|1-4}}]]
{{Main|量子態|算符}}
[[量子態]]指的是量子系統的狀態,[[態向量]]可以用來抽象地表現量子態。採用[[狄拉克標記]],態向量表示為[[狄拉克標記|右矢]]<math>|\psi\rangle</math>;其中,在符號內部的希臘字母<math>\psi</math>可以是任何符號,字母,數字,或單字。例如,沿著[[磁場]]方向測量[[電子]]的[[自旋]],得到的結果可以是上旋或是下旋,分別標記為<math>|\uparrow\rangle</math>或<math>|\downarrow\rangle</math>。<ref name=Griffiths2004>{{citation| author=Griffiths, David J.|title=Introduction to Quantum Mechanics (2nd ed.) | publisher=Prentice Hall |year=2004 |isbn= 0-13-111892-7}}</ref>{{rp|93-96}}
設定[[斯特恩-革拉赫實驗]]儀器的磁場方向為z-軸,入射的銀原子束可以被分裂成兩道銀原子束,每一道銀原子束代表一種量子態,上旋<math>|\uparrow\rangle</math>或下旋<math>|\downarrow\rangle</math>。<ref name=Sakurai>{{Citation | last1 = Sakurai | first1 = J. J. |last2 = Napolitano | first2 = Jim | title = Modern Quantum Mechanics | edition = 2nd | publisher = Addison-Wesley | year = 2010 | isbn =978-0805382914 }}</ref> [[量子態]]指的是量子系統的狀態,[[態向量]]可以用來抽象地表現量子態。採用[[狄拉克標記]],態向量表示為[[狄拉克標記|右矢]]<math>|\psi\rangle</math>;其中,在符號內部的希臘字母<math>\psi</math>可以是任何符號,字母,數字,或單字。例如,沿著[[磁場]]方向測量[[電子]]的[[自旋]],得到的結果可以是上旋或是下旋,分別標記為<math>|\uparrow\rangle</math>或<math>|\downarrow\rangle</math>。<ref name=Griffiths2004>{{citation| author=Griffiths, David J.|title=Introduction to Quantum Mechanics (2nd ed.) | publisher=Prentice Hall |year=2004 |isbn= 0-13-111892-7}}</ref> 對量子態做[[操作定義]],量子態可以從一系列製備程序來辨認,即這程序所製成的量子系統擁有這量子態。<ref name=Laloe>{{citation |last=Laloe| first=Franck|title=Do We Really Understand Quantum Mechanics| publisher=Cambridge University Press|year=2012| isbn = 978-1-107-02501-1}}</ref>{{rp|15-16}}例如,使用[[斯特恩-革拉赫實驗]]儀器,設定磁場朝著z-軸方向,如右圖所示,可以將入射的銀原子束,依照自旋的z-分量分裂成兩道,一道為上旋,量子態為<math>|\uparrow\rangle</math>,另一道為下旋,量子態為<math>|\downarrow\rangle</math>,這樣,可以製備成量子態為<math>|\uparrow\rangle</math>的銀原子束,或量子態為<math>|\downarrow\rangle</math>的銀原子束。原本銀原子束的態向量可以按照[[態疊加原理]]表示為<ref name=Sakurai/>{{rp|1-4}}
:<math>|\psi\rangle=\alpha|\uparrow\rangle+\beta|\downarrow\rangle</math>;
===动力学演化 ===
{{Main| 量子色動力學|量子電動力學}} 在量子力學公設裏,第二項直接提到量子系統的動力學演化,其遵守含時薛丁格方程式,因此,量子態的演化在任意時刻可以被完全預測,具有連續性、命定性與可逆性。第四項提到,當對於量子系統作[[量子測量|測量]]時,其量子態會塌縮至幾個本徵態中的一個本徵態,具有不連續性、概率性與不可逆性。怎樣調和這兩種不同的行為,一種是關於量子態的自然演化,另一種是關於測量引發的演化,這仍舊是[[未解決的物理學問題]]。<ref name=Laloe/>{{rp|7-11}}
量子系統的动力学演化可以用不同的绘景来表現。通过重新定义,这些不同的繪景可以互相變换,它们实际上是等價的。假若要專注分析量子態怎樣隨著時間的流易而演化,[[#時間演化算符|時間演化算符]]怎樣影響量子態,則可採用[[薛丁格繪景]]。假若要專注了解對應於可觀察量的算符怎樣隨著時間的流易而演化、時間演化算符怎樣影響這些算符,則可採用[[海森堡绘景]]。<ref name=Sakurai/>{{rp|80-89}}
=== 不确定性原理 ===
{{Main|不确定性原理}}
不确定性原理表明,越能準確地設定粒子的位置,則越不能準確地設定粒子的動量,反之亦然,<ref name=Hilgevoord_2016>{{cite web
| url =http://plato.stanford.edu/entries/qt-uncertainty/
=== 全同粒子 ===
[[File:Asymmetricwave2.png|right|thumb|200px|在[[無限深方形阱]]裏,兩個全同費米子的反對稱性波函數繪圖。{{efn|1=反對稱性波函數為 <math>[\sin(x)\sin(3y)-\sin(3x)\sin(y)]/\sqrt{2},\qquad 0\le x,y \le \pi</math> 。注意到在 <math>x=y</math> 附近,概率幅絕對值很微小,兩個費米子趨向於彼此互相遠離對方。}}]][[File:Symmetricwave2.png|right|thumb|200px|在[[無限深方形阱]]裏,兩個全同玻色子的對稱波函數繪圖。{{efn|1=對稱性波函數為 <math>-[\sin(x)\sin(3y)+\sin(3x)\sin(y)]/\sqrt{2},\qquad 0\le x,y \le \pi</math> 。注意到在 <math>x=y</math> 附近,概率幅絕對值較大,兩個費米子趨向於彼此互相接近對方。}}]]{{Main| 全同粒子|包立不相容原理}} 
粒子具有很多種物理性質,例如[[質量]]、[[電荷]]、[[自旋]]等等。假若兩個粒子具有不同的性質,則可以藉著測量這些不同的性質來區分這兩個粒子。根據許多實驗獲得的結果,同種類的粒子具有完全相同的性質,例如,宇宙裏所有的電子都帶有相等數量的電荷。因此,無法依靠物理性質來區分同種類的粒子,必需使用另一種區分法,即跟蹤每一個粒子的軌道。只要能夠無限精確地測量出每一個粒子的位置,就不會搞不清楚哪一個粒子在哪裡。這個適用於經典力學的方法有一個問題,那就是它與量子力學的基本原理相矛盾。根據量子理論,在位置測量期間,粒子並不會保持明確的位置。粒子的位置具有[[概率性]]。隨著時間的流易,幾個粒子的量子態可能會移動蔓延,因此某些部分會互相重疊在一起。假若發生重疊事件,给每个粒子“挂上一个标签”的方法立刻就失去了意义,就無法區分在重疊區域的兩個粒子。<ref name=Griffiths2004/>{{rp|201ff}}
=== 量子纠缠 ===
[[File:EPR-Experiment Bohm 1676x516 zh.png|thumb|350px|right|假設一個零自旋中性[[π介子]]衰變成一個[[電子]]與一個[[正電子]],這兩個衰變產物各自朝著相反方向移動,雖然彼此之間相隔一段距離,它們仍舊會發生量子糾纏現象。]]{{Main|量子纠缠}}假設兩個粒子在經過短暫時間彼此耦合之後,單獨攪擾其中任意一個粒子,儘管兩個粒子之間可能相隔很長一段距離,還是會不可避免地影響到另外一個粒子的性質,這種關聯現象稱為量子糾纏。往往由多个粒子组成的量子系统,其状态无法被分离为其组成的单个粒子的状态,在这种情况下,单个粒子的状态被称为是纠缠的。纠缠的粒子有惊人的特性,这些特性违背一般的直觉。比如说,对一个粒子的测量,可以导致整个系统的波包立刻塌缩,因此也影响到另一个、遥远的、与被测量的粒子纠缠的粒子。这个现象并不违背[[狭义相对论]],因为在量子力学的层面上,在测量粒子前,它们不能被單獨各自定义,实际上它们仍是一个整体。不过在测量它们之后,它们就会脱离量子纠缠的状态。<ref name=Laloe/>{{rp|27-31}}{{rp|120ff}}
=== 量子退相干 ===
{{Main|量子退相干}}
作为一个基本理论,量子力学原则上,应该适用于任何大小的物理系统,也就是说不仅限于[[宏观|微观系统]],那么,它应该提供一个过渡到[[宏观]]經典物理的方法。量子现象的存在提出了一个问题,即怎样从量子力学的观点,解释宏观系统的經典现象。尤其无法直接看出的是,量子力学中的[[量子疊加]],在宏观世界怎樣呈現出來。1954年,爱因斯坦在给[[马克斯·玻恩]]的信中,就提出了怎样从量子力学的角度,来解释宏观世界的物理現象的问题,他指出仅仅量子力学现象太“小”无法解释这个问题。<ref name="Joos2003">{{cite book|author=E. Joos et al.|title=''Decoherence and the Appearance of a Classical World in Quantum Theory''|publisher=Springer|year=2003|isbn=3-540-00390-8}}</ref>{{rp|62-63}}这个问题的另一个例子是由薛定谔提出的[[薛定谔猫]]的思想实验。<ref name="Joos2003"/>{{rp|2}}
=== 經典物理 ===
{{Image|zh-hans=Hamilton analogy zh-hans.svg|zh-hant=Hamilton analogy zh-hant.svg|thumb|200px|right|波動光學在短波長極限成為幾何光學,類似地,量子力學在普朗克常數趨零極限成為經典力學。基本而言,在[[普朗克常數]]趨零極限,可以從量子力學的[[薛丁格方程式]]推導出經典力學的[[哈密頓-亞可比方程式]]。詳盡細節,請參閱條目[[哈密顿-雅可比方程#波動方程式&rArr;粒子方程式|哈密頓-亞可比方程式]]。<ref name=Joas>{{cite journal | last1 =Joas | first1 =Christian | last2 =Lehner | first2 =Christoph | title =The classical roots of wave mechanics: Schrödinger's transformations of the optical-mechanical analogy | journal =Studies in History and Philosophy of Modern Physics | volume =40 | issue =4 | pages =338-351 | date =2009 | url =http://quantum-history.mpiwg-berlin.mpg.de/eLibrary/fileserverPub/Joas-Lehner_2009_Optical-mechanical.pdf/V1_Joas-Lehner_2009_Optical-mechanical.pdf | issn =1355-2198}}</ref>}}
{{Main| 經典物理|半經典物理學}} 
量子力學的預測已被實驗核對至極高準確度,是在科學領域中,最為準確的理論之一。<ref name=Hobson/>[[對應原理]]實現經典力學與量子力學之間的對應關係,根據對應原理,假若量子系统已達到某「經典極限」,則其物理行為可以很精确地用經典理论來描述;這經典極限可以是大[[量子數]]極限,也可以是[[普朗克常數]]趨零極限。實際而言,许多宏观系统都是用經典理论(如經典力学和电磁学)来做精确描述。因此在非常“大”的系统中,量子力学的特性應該会逐漸與經典物理的特性相近似,两者必須相互符合。<ref name="Muynck2002">{{cite book|author=W.M. de Muynck|title=Foundations of Quantum Mechanics, an Empiricist Approach|date=30 September 2002|publisher=Springer Science & Business Media|isbn=978-1-4020-0932-7}}</ref>{{rp|190-191}}
=== 狹義相对论 ===
{{Main|狹義相對論}}
原本量子力學的表述所針對的模型,其對應極限為非相對論性古典力學。例如,眾所皆知的[[量子諧振子]]模型使用了非相對論性表達式來表達其[[動能]],因此,這模型是[[諧振子|古典諧振子]]的量子版本。<ref name=Griffiths2004/>{{rp|40-59}}<!--from QM#Interactions with other scientific theories-->
=== 粒子物理學 ===
{{Main| 強相互作用|弱相互作用}} 
專門描述[[强相互作用]]、[[弱相互作用]]的量子場論已發展成功。[[强相互作用]]的量子场论稱為[[量子色动力学]],这个理论描述亞原子粒子,例如[[夸克]]、[[膠子|胶子]],它們彼此之间的相互作用。[[弱相互作用]]与[[电磁相互作用]]也被統一為單獨量子場論,稱為[[电弱相互作用]]。<ref name=Halliday/>{{rp|1234-1236}}
=== 廣義相對論 ===
{{Main| 量子引力|廣義相對論}} 
[[量子引力]]是對[[引力場]]進行量子化描述的理論,屬於[[萬有理論]]之一。物理學者發覺,建造引力的量子模型是一件非常艱難的研究。半經典近似是一種可行方法,推導出一些很有意思的預測,例如,[[霍金輻射]]等等。可是,由於[[廣義相對論]](至今為止,最成功的引力理論)與量子力學的一些基礎假說相互矛盾,表述出一個完整的量子引力理論遭到了嚴峻阻礙。嘗試結合[[廣義相對論]]與[[量子力學]]是熱門研究方向,為當前的物理學尚未解决的問題。當前主流嘗試理論有:[[超弦理論]]、[[迴圈量子重力理論]]等等。<ref>{{Cite journal
|last=Smolin
== 哲学观点 ==
{{unsolved| 物理學|量子理論的描述怎樣成為做實驗所觀查到的大自然實在,這包括[[態疊加原理|量子態疊加]]、[[波函數塌縮]]、[[量子去相干]]等等?換句話說,這是一種[[量子測量|測量問題]],造成波函數塌縮為[[確定態]]的量子測量所倚賴的機制為何?}}{{Main|量子力學詮釋}}
量子力学是經歷最严格验证的物理理论之一。至今为止,尚未找到任何能夠推翻量子力学的实验数据。大多数物理学者认为,“几乎”在所有情况下,它正确地描写能量和物质的物理性质。虽然如此,量子力学中,依然存在着概念上的弱点和缺陷,除前面所述關於万有引力的量子理论的缺乏以外,現今,对於量子力学的[[量子力学诠释|詮释]]依然存在着嚴重争议。<ref>{{Cite book|author=曾谨言|title=量子力学教程:量子力学百年|publisher=科学出版社|isbn=7-03-010982-1|page=ix-xxi}}</ref><ref name=Haroche/>{{rp|4-5}}
從初始到現今,量子力學的各種反直覺論述與結果一直不停地引起在哲學、詮釋方面的強烈辯論。甚至一些基礎論點,例如,[[馬克斯·玻恩]]關於概率幅與概率分佈的[[玻恩定則|基本定則]],也需要經過數十年的嚴格思考論證,才被學術界接受。{{efn|玻恩詮釋波函數為在某時間、某位置找到粒子的概率幅。這是一種粒子論。波函數也可以詮釋為「在某時間、某位置發生相互作用的概率輻」。這較寬鬆的詮釋方式可以適用於波動論或粒子論。<ref name=Hobson/>}}[[理察·費曼]]曾經說過一句銘言:「我認為我可以有把握地說,沒有人懂得量子力學!」<ref>The Character of Physical Law (1965) Ch. 6; also quoted in The New Quantum Universe (2003), by Tony Hey and Patrick Walters</ref>[[史蒂文·溫伯格]]承認:「依照我現在的看法,完全令人滿意的量子力學詮釋並不存在。」<ref>Weinberg, S. [http://arxiv.org/abs/1109.6462 "Collapse of the State Vector"], Phys. Rev. A 85, 062116 (2012).</ref>
雖然在發表後已經過七十幾年光陰,[[哥本哈根詮釋]]仍舊是最為物理學者接受的對於量子力學的一種詮釋。它的主要貢獻者是[[尼尔斯·玻尔]]與[[沃纳·海森堡]]。根據這種詮釋,量子力學的概率性論述不是一種暫時補丁,並且最終將會被一種命定性理論取代,它必須被視為一種最終拋棄經典因果論思維的動作。在這裡,任何量子力學形式論的良好定義的應用必須將實驗設置納入考量,這是因為不同實驗狀況獲得的結果所具有的[[互補原理|互補性]]。<ref name=Laloe/>{{rp|15-16}}
身為量子理論的創始者之一的愛因斯坦很不滿意這種非命定性的論述。他認為量子力學不具有完備性,他提出一系列反駁論述,其中最著名的就是[[愛因斯坦-波多爾斯基-羅森佯謬]]。這佯謬建立於[[爱因斯坦-波多尔斯基-罗森佯谬#定域實在論|定域實在論]]。假設局區域實在論成立,則量子力學不具有完備性。接近三十年以後,[[約翰·貝爾]]發佈論文表示,對於這個佯謬稍加理論延伸,就會導致對於量子力學與定域實在論出現不同的預言,因此可以做實驗檢試量子世界到底與哪種預言一致。<ref name=Bell1964>Bell, John. On the Einstein Podolsky Rosen Paradox, Physics '''1''' 3, 195-200, Nov. 1964</ref><ref name=Aspect1999>{{cite journal | title = Bell's inequality test: more ideal than ever | journal = Nature | date = 1999-03-18 | author = Aspect A | volume = 398 | pages = 189–90| doi = 10.1038/18296 | accessdate = 2010-09-08|bibcode = 1999Natur.398..189A | issue=6724}}</ref>為此,完成了很多相關實驗,這些實驗確定量子力學的預言正確無誤,定域實在論無法描述量子世界。<ref>{{cite web|url=http://plato.stanford.edu/entries/qm-action-distance/ |title=Action at a Distance in Quantum Mechanics (Stanford Encyclopedia of Philosophy) |publisher=Plato.stanford.edu |date=2007-01-26 |accessdate=2012-08-18}}</ref>
== 应用 ==
 
在许多现代技术装备中,量子效应起了重要的作用,例如,[[激光]]的工作機制是[[愛因斯坦]]提出的[[受激發射]]、[[電子顯微鏡|电子显微镜]]利用電子的[[波粒二象性]]來增加解析度、[[原子钟]]使用束縛於原子的[[電子]]從一個[[能級]]躍遷至另一個能級時所發射出的[[微波]]信號的[[頻率]]來計算與維持時間的準確性、[[核磁共振成像]]倚賴[[核磁共振]]機制來探測物體內部的結構。对[[半导体]]的研究导致了[[二极管]]和[[双极性晶体管|三极管]]的发明,這些都是現代電子系統與電子器件不可或缺的元件。<ref name=Haroche/>{{rp|5-10}}
===电子器件===
{{Main|电子器件}}
量子力学在电子器件中得到了广泛应用。比如[[发光二极管]]在日常照明中应用中越来越广泛<ref>{{cite web
| url =https://scitechvista.nat.gov.tw/zh-tw/articles/c/5/1/10/62/172.htm
===计算机===
{{Main| 計算機|量子計算機}} 
相比于晶体管等电子器件,[[量子计算机]]的研制则更为前沿。在一些特定算法下,量子计算机的速度会比经典架构的计算机快成千上万倍(比如[[量子退火算法]])。经典计算机使用0和1作为[[位元|比特]],而量子计算机则使用[[量子位]]作为基本单位。量子位由不同的电子[[态叠加]]形成。<ref name=Haroche/>{{rp|91-100}}
===宇宙學===
[[Image:Cmbr.svg|thumb|200px| 由FIRAS儀器對COBE觀測的宇宙微波背景輻射光譜,為最精確測量的[[黑體輻射]]光譜性質,<ref name="dpf99">{{cite conference|last=White|first=M.|year=1999|title=Anisotropies in the CMB|booktitle=Proceedings of the Los Angeles Meeting, DPF 99|publisher=UCLA|accessdate=2008-12-18|arxiv=astro-ph/9903232 |bibcode= 1999dpf..conf.....W }}</ref>即使將圖像放大,誤差範圍也極小,無法由理論曲線中分辨觀測數據。]]{{Main| 宇宙學|量子宇宙學}} 
量子力學能夠用來解釋很多奇異的宇宙現象,例如,[[宇宙微波背景]]的[[頻譜]]可以用[[普朗克黑體輻射定律]]來解釋。宇宙微波背景證實了[[大爆炸理論]]的正確無誤,自此,[[穩態理論]]開始式微。從宇宙微波背景可以推論,早期宇宙非常炙熱、對於電磁輻射不透明、具有[[宇宙學原理|均質性]]與[[各向同性]],是標準的[[黑体 (物理学)|黑體]]。<ref name="Basdevant2007">{{cite book|author=Jean-Louis Basdevant|title=Lectures on Quantum Mechanics|publisher=Springer Science & Business Media|isbn=978-0-387-37744-5}}</ref>{{rp|273}}<ref name="Ryden2003">{{cite book|author=Barbara Sue Ryden|title=Introduction to cosmology|year=2003|publisher=Addison-Wesley|isbn=978-0-8053-8912-8}}</ref>{{rp|152}}
=== 化学 ===
{{Main| 化学|量子化學}} 
任何物质的化学性質,均是由其原子或分子的电子结构所决定的。通过解析包括了所有相关的原子核和电子的多粒子薛定谔方程,可以计算出该原子或分子的电子结构。在实践中,人们认识到,要计算这样的方程实在太复杂,對於許多案例,必需使用简化的模型,找到可行的數學計算方法,才能夠找到近似的电子结构,從而确定物质的化学性質。<ref name="OxtobyGillis2011"/>{{rp|193-195}}實際上,[[量子電動力學]]是化學的基礎原理<ref name="FeynmanPhys">{{cite book|title=[[费曼物理学讲义|The Feynman Lectures on Physics]]||author1=Richard P. Feynman|author2=Robert B. Leighton|author3=Matthew Sands|publisher=Addison–Wesley|year=1964|volume=1|isbn=0-201-02115-3|pages=2-8}}</ref>。
=== 信息学 ===
{{Main| 信息學|量子信息學}} 
目前的研究聚焦於找到可靠與能夠直接处理量子态的方法。量子系統擁有一種特性,即對於量子數據的測量會不可避免地改變數據,這種特性可以用來偵測出任何竊聽動作。倚賴這特性,[[量子密碼學]]能夠保證[[通信]]安全性,使得通信双方能够产生并分享一个随机的,安全的[[密钥]],来加密和解密信息。比較遙遠的目標是發展出量子電腦。由於量子态具有量子叠加的特性,理论而言,量子電腦可以達成高度[[并行计算]],其計算速度有可能以指數函數快過普通電腦。另外,應用量子纏結特性與經典通訊理論,[[量子遙傳]]能夠將物體的量子態從某個位置傳送至另一個位置。這是正在積極進行的一門學術領域。<ref name="NielsenChuang2010">{{cite book|author1=Michael A. Nielsen|author2=Isaac L. Chuang|title=Quantum Computation and Quantum Information: 10th Anniversary Edition|accessdate=30 August 2013|date=9 December 2010|publisher=Cambridge University Press|isbn=978-1-139-49548-6}}</ref>
135,189
次編輯