求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

變更

前往: 導覽搜尋

电子

增加 1,408 位元組, 4 年前
無編輯摘要
'''电子'''
{{Infobox person
| 姓名     = 电子
|圖片 = [[File:Timg (1)1234.jpg|缩略图|居中|250px|[https://image.baidu.com/search/detail?ct=503316480&z=0&ipn=d&word=%E7%94%B5%E5%AD%90%E7%BB%93%E6%9E%84&step_word=&hs=0&pn=0&spn=0&di=14410&pi=0&rn=1&tn=baiduimagedetail&is=0%2C0&istype=2&ie=utf-8&oe=utf-8&in=&cl=2&lm=-1&st=-1&cs=2117795279%2C1228457757&os=3429245706%2C3148187082&simid=3465032063%2C210219662&adpicid=0&lpn=0&ln=955&fr=&fmq=1570499738993_R&fm=result&ic=&s=undefined&hd=&latest=&copyright=&se=&sme=&tab=0&width=&height=&face=undefined&ist=&jit=&cg=&bdtype=0&oriquery=&objurl=http%3A%2F%2Fbaike.soso.com%2Fp%2F20090718%2Fbki-20090718085821-169945719.jpg&fromurl=ippr_z2C%24qAzdH3FAzdH3Fkwthj_z%26e3Bf5f5_z%26e3Bv54AzdH3Fi9mn80mm_z%26e3Bip4%3Ffr%3DSgjxp%26fr%3Ds9mn80m0&gsm=&rpstart=0&rpnum=0&islist=&querylist=&force=undefined 原图链接][https://baike.sogou.com/historylemma?lId=4631766&cId=4631767 图片来源于百科网]]]
|圖片尺寸 =
| 職業 =
| 知名原因 =
| 知名作品 = </br> </br> </br> </br>
}}
'''电子'''是最早发现的基本粒子。带负电,电量为1.602176634×10-19库仑,是电量的最小单元。质量为9.10956×10-31kg。 常用符号e表示。1897年由英国物理学家约瑟夫 · 约翰 · 汤姆生在研究阴极射线时发现。一切原子都由一个带正电的原子核和围绕它运动的若干电子组成。电荷的定向运动形成电流,如金属导线中的电流。利用电场和磁场,能按照需要控制电子的运动(在固体、真空中),从而制造出各种电子仪器和元件,如各种电子管、电子显微镜等。电子的波动性于1927年由晶体衍射实验得到证实。 [1]  
=='''基本信息'''==
{| class="wikitable"|-| 中文名 || 电子 ||   ||9.10956×10-31kg千克|-| 外文名 ||Electron、Electronic ||发现者   ||发现者|-| 表示符号 ||e || 应用学科 || 化学、物理 |-| 所带电荷 || -1.602176634×10⁻¹⁹库仑 ||   质 || 属于费米子  发现者 约瑟夫·约翰·汤姆孙|}
=='''简介'''==
[[File:20300031222855133611043623945.jpg|缩略图|250px|[https://image.so.com/view?q=%E7%94%B5%E5%AD%90&src=tab_www&correct=%E7%94%B5%E5%AD%90&ancestor=list&cmsid=ca31595bad165a4c05883dee7148cdb8&cmran=0&cmras=6&cn=0&gn=0&kn=50&fsn=124&adstar=0&clw=246#id=35b604de846bf20599632a9b1dbe2567&currsn=0&ps=107&pc=107 原图链接][http://tupian.baike.com/a2_08_04_20300031222855133611043623945_jpg.html?prd=so_tupian 图片来源于互动百科网]]]
 
电子(electron)是带负电的亚原子粒子。它可以是自由的(不属于任何原子),也可以被原子核束缚。原子中的电子在各种各样的半径和描述能量级别的球形壳里存在。球形壳越大,包含在电子里的能量越高。
静电是指当物体带有的电子多于或少于原子核的电量,导致正负电量不平衡的情况。当电子过剩时,称为物体带负电;而电子不足时,称为物体带正电。当正负电量平衡时,则称物体是电中性的。静电在我们日常生活中有很多应用方法,其中例子有激光打印机。 [3]
=='''研究历史'''==
[[File:01300001164836130075549531085.jpg|缩略图|200px|[https://image.so.com/view?q=%E7%94%B5%E5%AD%90%E7%BB%93%E6%9E%84%E5%9B%BE&src=srp&correct=%E7%94%B5%E5%AD%90%E7%BB%93%E6%9E%84%E5%9B%BE&ancestor=list&cmsid=a282870259da5a63950712ca54915b2e&cmran=0&cmras=0&cn=0&gn=0&kn=0&fsn=60&adstar=0&clw=246#id=adab8f10984e19af59a5983f1c574560&currsn=0&ps=60&pc=60 原图链接][https://www.so.com/s?src=lm&ls=s112c46189d&q=%E7%94%B5%E5%AD%90%E7%BB%93%E6%9E%84%E5%9B%BE&lmsid=8f01fae67418909c&lm_extend=ctype%3A3%7Clmbid%3A0 图片来源于360搜索网]]]电子是在1897年由剑桥大学卡文迪许实验室的约瑟夫 · 约翰 · 汤姆森在研究阴极射线时发现的。约瑟夫 · 约翰 · 汤姆森提出了葡萄干模型(枣糕模型)。
[4]
1897年,英国剑桥大学卡文迪许实验室的约瑟夫 · 约翰 · 汤姆森重做了赫兹的实验。使用真空度更高的真空管和更强的电场,他观察出负极射线的偏转,并计算出负级射线粒子(电子)的质量-电荷比例,因此获得了1906年的诺贝尔物理学奖。汤姆逊采用1891年乔治 · 斯托尼所起的名字——电子来称呼这种粒子。至此,电子作为人类发现的第一个亚原子粒子和打开原子世界的大门被汤姆逊发现了。
电子并非基本粒子,100多年前,当美国物理学家Robert Millikan首次通过实验测出电子所带的电荷为1.602×10-19C后,这一电荷值便被广泛看作为电荷基本单元。然而如果按照经典理论,将电子看作“整体”或者“基本”粒子,将使我们对电子在某些物理情境下的行为感到极端困惑,比如当电子被置入强磁场后出现的非整量子霍尔效应。
2018年11月16日,国际计量大会通过决议,1安培被定义为“1s内通过(1.602176634)⁻¹×10^18个电子电荷所对应的电流”。
=='''性质特征'''==
[[File:20110708222155-1231121079.jpg|缩略图|250px|[https://image.so.com/view?q=%E7%94%B5%E5%AD%90%E7%BB%93%E6%9E%84%E5%9B%BE&src=srp&correct=%E7%94%B5%E5%AD%90%E7%BB%93%E6%9E%84%E5%9B%BE&ancestor=list&cmsid=a282870259da5a63950712ca54915b2e&cmran=0&cmras=0&cn=0&gn=0&kn=0&fsn=60&adstar=0&clw=246#id=48e1408f87f5a9cc7581c7d74f6f52ac&currsn=0&ps=60&pc=60 原图链接][https://wenwen.sogou.com/z/q303050181.htm 图片来源于搜狗网]]]
 
电子块头小重量轻(比μ介子还轻205倍),被归在亚原子粒子中的轻子类。轻子是物质被划分的作为基本粒子的一类。电子带有二分之一自旋,满足费米子的条件(按照费米-狄拉克统计)。电子所带电荷约为-1.6×10-19库仑,质量为9.10956×10-31kg(0.51MeV/c2)。通常被表示为e⁻。与电子电性相反的粒子被称为正电子,它带有与电子相同的质量,自旋和等量的正电荷。电子在原子内做绕核运动,能量越大距核运动的轨迹越远,有电子运动的空间叫电子层,第一层最多可有2个电子。第二层最多可以有8个,第n层最多可容纳2n2个电子,最外层最多容纳8个电子。最后一层的电子数量决定物质的化学性质是否活泼,1、2、3电子为金属元素,4、5、6、7为非金属元素,8为稀有气体元素。
卢瑟福根据他的实验结果,于1911年,设计出卢瑟福模型。在这模型里,原子的绝大部分质量都集中在小小的原子核中,原子的绝大部分都是真空。而电子则像行星围绕太阳运转一样围绕着原子核运转。这一模型对后世产生了巨大影响,直到现在,许多高科技组织和单位仍然使用电子围绕着原子核的原子图像来代表自己。
在经典力学的框架之下,行星轨道模型有一个严重的问题不能解释:呈加速度运动的电子会产生电磁波,而产生电磁波就要消耗能量;最终,耗尽能量的电子将会一头撞上原子核(就像能量耗尽的人造卫星最终会进入地球大气层)。于1913年,尼尔斯 · 玻尔提出了玻尔模型。在这模型中,电子运动于原子核外某一特定的轨域。距离原子核越远的轨域能量越高。电子跃迁到距离原子核更近的轨域时,会以光子的形式释放出能量。相反的,从低能级轨域到高能级轨域则会吸收能量。藉著这些量子化轨域,玻尔正确地计算出氢原子光谱。但是,使用玻尔模型,并不能够解释谱线的相对强度,也无法计算出更复杂原子的光谱。这些难题,尚待后来量子力学的解释。
1916年,美国物理化学家吉尔伯特 · 路易士成功地解释了原子与原子之间的相互作用。他建议两个原子之间一对共用的电子形成了共价键。于1923年,沃尔特 · 海特勒Walter Heitler和弗里茨 · 伦敦Fritz London应用量子力学的理论,完整地解释清楚电子对产生和化学键形成的原因。于1919年,欧文 · 朗缪尔将路易士的立方原子模型cubical atom。加以发挥,建议所有电子都分布于一层层同心的(接近同心的)、等厚度的球形壳。他又将这些球形壳分为几个部分,每一个部分都含有一对电子。使用这模型,他能够解释周期表内每一个元素的周期性化学性质。
于1924年,奥地利物理学家沃尔夫冈 · 泡利用一组参数来解释原子的壳层结构。这一组的四个参数,决定了电子的量子态。每一个量子态只能容许一个电子占有。(这禁止多于一个电子占有同样的量子态的规则,称为泡利不相容原理)。这一组参数的前三个参数分别为主量子数、角量子数和磁量子数。第四个参数可以有两个不同的数值。于1925年,荷兰物理学家撒姆耳 · 高斯密特Samuel Abraham Goudsmit和乔治 · 乌伦贝克George Uhlenbeck提出了第四个参数所代表的物理机制。他们认为电子,除了运动轨域的角动量以外,可能会拥有内在的角动量,称为自旋,可以用来解释先前在实验里,用高分辨率光谱仪观测到的神秘的谱线分裂。这现象称为精细结构分裂。
=='''质量测量'''==
远距离地观测电子的各种现象,主要是依靠探测电子的辐射能量。例如,在像恒星日冕一类的高能量环境里,自由电子会形成一种藉著制动辐射来辐射能量的等离子。电子气体的等离子振荡。是一种波动,是由电子密度的快速震荡所产生的波动。这种波动会造成能量发射。天文学家可以使用无线电望远镜来探测这能量。
===焊接应用===
电子束科技,应用于焊接,称为电子束焊接。这焊接技术能够将高达107W ·cm2 •cm2 能量密度的热能,聚焦于直径为0.3~1.3mm的微小区域。使用这技术,技工可以焊接更深厚的物件,限制大部分热能于狭窄的区域,而不会改变附近物质的材质。为了避免物质被氧化的可能性,电子束焊接必须在真空内进行。不适合使用普通方法焊接的传导性物质,可以考虑使用电子束焊接。在核子工程和航天工程里,有些高价值焊接工件不能忍受任何缺陷。这时候,工程师时常会选择使用电子束焊接来完成任务。
===印刷电路===
电子束平版印刷术是一种分辨率小于一毫米的蚀刻半导体的方法。这种技术的缺点是成本高昂、程序缓慢、必须操作于真空内、还有,电子束在固体内很快就会散开,很难维持聚焦。最后这缺点限制住分辨率不能小于10nm。因此,电子束平版印刷术主要是用来制备少数量特别的集成电路。
===自由雷射===
自由电子雷射将相对论性电子束通过一对波荡器。每一个波荡器是由一排交替方向的磁场的磁偶极矩组成。由于这些磁场的作用,电子会发射同步辐射;而这辐射会同调地与电子相互作用。当频率匹配共振频率时,会引起辐射场的强烈放大。自由电子雷射能够发射同调的高辐射率的电磁辐射,而且频域相当宽广,从微波到软X-射线。不久的将来,这仪器可以应用于制造业、通讯业和各种医疗用途,像软组织手术。
 
[[Category:300 科學總論]]
[[Category:330 物理學總論]]
10,734
次編輯