求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

變更

前往: 導覽搜尋

开普勒第三定律

增加 23 位元組, 1 年前
無編輯摘要
德国天文学家约翰尼斯·开普勒根据丹麦天文学家第谷·布拉赫等人的观测资料和星表,通过开普勒本人的观测和分析后,于1609年在他出版的《新天文学》上发表了关于行星运动的前两条定律,又于1618年,在《宇宙谐和论》提出了第三条定律。
开普勒第三定律为 [[ 经典力学 ]] 的建立、牛顿的 [[ 万有引力定律 ]] 的发现,都作出重要的提示。
==定律定义==
开普勒在《宇宙谐和论》上的原始表述:绕以太阳为焦点的椭圆轨道运行的所有行星,其各自椭圆轨道半长轴的立方与周期的平方之比是一个常量。
==适用范围==
===成立条件===
开普勒定律是一个普适定律,适用于一切 [[ 二体问题 ]] 。开普勒定律不仅适用于太阳系,他对具有中心天体的引力系统(如行星-卫星系统)和双星系统都成立。围绕同一个中心天体运动的几个天体,它们轨道半径三次方与周期的平方的比值( )都相等,为 ,M为中心天体质量。这个比值是一个与行星无关的常量,只与中心体质量有关,那么M相同是这个比值相同。
用开普勒第三定律解决二体问题时,可将两个质点在相互作用下的运动,可约化为一个质点相对另一个质点的相对运动,质点的质量需改用约化质量 ,即 ,其中 , 为两质点的质量。
引入天体质量后可表示为:
其中 , 为两个相应的行星质量, , 为两个相应行星围绕同一恒星运动的周期, , 为两个行星围绕同一恒星运动的平均轨道半径。 [2] 通过拓展形式,可以根据绕同一行星的两星体轨道半径估测星体质量,或根据星体质量估测运行轨道。
==应用实例==
===天体===
1600年,德国天文学家开普勒应丹麦天文学家第谷之邀,开普勒前往布拉格做第谷的助手。次年,第谷去世,他将自己一生积累的观测资料留给了开普勒。
开普勒分析第谷测量行星位置的多年记录(特别是 [[ 火星 ]] 的椭圆形轨道),在1619年发表他的第三行星定律。
到了1690年左右,英国人 [[ 牛顿 ]] 以“万有引力”概念解开行星轨道之谜,并且将开普勒第三行星定律改进成 ,G是万有引力常数,M是太阳质量,m是行星质量,P是公转周期。
19世纪初德国数学家高斯将牛顿的式子改写为 ,其中k为高斯引力常数, 成为了G的“代用品”。
1798年,英国科学家亨利·卡文迪许通过扭秤实验,测量出中了引力常量G的大小是G=6.754×10⁻¹¹N·m²/kg²,卡文迪许对G的测量进一步完善了开普勒第三定律。 [25] G在2006年的国际推荐值为G=6.67428×10⁻¹¹N·m²/kg²。
==定律影响==
开普勒的定律给予 [[ 亚里士多德 ]] 派与 [[ 托勒密 ]] 派在天文学与物理学上极大的挑战。他的论点,打破了亚里士多德留下的天文学与物理学中的陈旧观念。
开普勒定律的一个重要功绩,就是后来在1684年牛顿根据开普勒定律及自己研究的运动定律,破译了天文运动的机密——万有引力定律。
13,617
次編輯